Difference between revisions of "A Review of Maxwell's Equations & Computational Electromagnetics (CEM)"

From Emagtech Wiki
Jump to: navigation, search
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:Maxwell1.png|right|600px]]
+
[[Image:Maxwell1.png|right|720px]]
 
<table>
 
<table>
 
<tr>
 
<tr>
<td>[[image:Cube-icon.png | link=Getting_Started_with_EM.CUBE]] [[image:cad-ico.png | link=CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]] </td>
+
<td>[[image:Cube-icon.png | link=Getting_Started_with_EM.Cube]] [[image:cad-ico.png | link=Building Geometrical Constructions in CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]] </td>
 
<tr>
 
<tr>
 
</table>
 
</table>
[[Image:Back_icon.png|40px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
 
== Maxwell's Equations in Differential Form ==
 
  
Maxwell's equations form the basis for the mathematical formulation of almost all electromagnetic modeling problems. The differential form of Maxwell's equations relates the electric and magnetic fields and sources locally at every point in the space. In an isotropic, time-invariant and homogeneous medium, they are given by:
 
  
:<math> \nabla . \mathbf{D} = \rho </math>
+
The following links provide a basic review of electromagnetic theory and the various numerical techniques used by [[EM.Cube]]'s simulation engines:
  
:<math> \nabla . \mathbf{B} = 0 </math>
+
[[Basic Electromagnetic Theory]]
  
:<math> \nabla \times \mathbf{E} = - \dfrac{\partial \mathbf{B}}{\partial t} </math>
+
[[The Far-Field Approximation for Radiation & Scattering Problems]]
  
:<math> \nabla \times \mathbf{H} = \dfrac{\partial \mathbf{D}}{\partial t} + \mathbf{J} </math>
+
[[Basic Principles of The Finite Difference Time Domain Method]]
  
where '''&nabla;''' is the gradient operator:
+
[[Basic Principles of SBR Ray Tracing]]
  
:<math> \nabla = \dfrac{\partial}{\partial x}\hat{\mathbf{x}}  + \dfrac{\partial}{\partial y}\hat{\mathbf{y}}  + \dfrac{\partial}{\partial z}\hat{\mathbf{z}}  </math>
+
[[Basic Principles of The Method of Moments]]
  
'''&nabla;.''' denotes the divergence operation, '''&nabla;'''&times; denotes the curl operation, '''E''' and '''H''' are the electric and magnetic fields in V/m and A/m, respectively, '''D''' and '''B''' are the electric and magnetic flux densities in C/m<sup>2</sup> and Wb, respectively, '''J''' is the electric volume current density in A/m<sup>2</sup>, &rho; is the electric volume charge density in C//m<sup>3</sup>, and the following constitutive relationships hold:
+
[[Basic Principles of Physical Optics]]
  
:<math> \mathbf{D} = \epsilon \mathbf{E}, \quad \quad \mathbf{B} = \mu \mathbf{H}, \quad \quad \mathbf{J} = \sigma \mathbf{E} </math>
+
[[Electrostatic_%26_Magnetostatic_Field_Analysis | Basic Principles of Electrostatic & Magnetostatic Field Analysis]]
  
where &epsilon; is the permittivity in F/m, &mu; is the permeability in H/m, and &sigma; is the electric conductivity of the medium in S/m.
+
[[Steady-State_Thermal_Analysis | Basic Principles of Steady-State Thermal Analysis]]
  
Although real magnetic charges and currents do not exist in nature, using the electromagnetic equivalence theorem, it is convenient to introduce a magnetic volume charge density in C/m<sup>3</sup>, and a magnetic volume current density '''M''' in V/m<sup>2</sup> to preserve the symmetry and duality of Maxwell's equations in the following form:
 
  
:<math> \nabla . \mathbf{D} = \rho </math>
+
{{Note|The above pages contain a large number of mathematical expressions and equations. Sometimes, the mathematical notations might not load properly the first time you open a page. In that case, you need to use the "reload" or "update" feature of your web browser to refresh the page, or return to the gateway page and try to open the link one more time.}}  
 
+
:<math> \nabla . \mathbf{B} = \rho_m  </math>
+
 
+
:<math> \nabla \times \mathbf{E} = - \dfrac{\partial \mathbf{B}}{\partial t} - \mathbf{M} </math>
+
 
+
:<math> \nabla \times \mathbf{H} = \dfrac{\partial \mathbf{D}}{\partial t} + \mathbf{J} </math>
+
 
+
The following constitutive relationships now hold:
+
 
+
:<math> \mathbf{D} = \epsilon \mathbf{E}, \quad \quad \mathbf{J} = \sigma \mathbf{E} </math>
+
 
+
:<math> \mathbf{B} = \mu \mathbf{H}, \quad \quad \mathbf{M} = \sigma_m \mathbf{H} </math>
+
 
+
where &sigma;<sub>m</sub> is the magnetic conductivity of the medium in &Omega;/m.
+
 
+
Additionally, one can write the following continuity equations:
+
 
+
:<math> \nabla . \mathbf{J} - \dfrac{\partial \rho}{\partial t} = 0 </math>
+
 
+
:<math> \nabla . \mathbf{M} - \dfrac{\partial \rho_m}{\partial t} = 0 </math>
+
 
+
== The Wave Equations ==
+
 
+
Combining Maxwell's equations, we can arrive at the electric and magnetic wave equations:
+
 
+
:<math> \nabla^2 \mathbf{E} - \epsilon \mu \dfrac{\partial \mathbf{E}}{\partial t} = 0 </math>
+
 
+
:<math> \nabla^2 \mathbf{H} - \epsilon \mu \dfrac{\partial \mathbf{H}}{\partial t} = 0 </math>
+
 
+
where '''&nabla;'''<sup>2</sup> is the Laplacian operator. The wave equations are hyperbolic partial differential equation in space coordinates and time, which must be solved subject to the proper initial and boundary conditions.
+
 
+
== Electric & Magnetic Boundary Conditions ==
+
 
+
The electric field boundary conditions at the interface between two material media are:
+
 
+
<math> \hat{\mathbf{n}} . [ \mathbf{D_2(r)} - \mathbf{D_1(r)} ] = \rho_s (\mathbf{r})  </math>
+
 
+
<math> \hat{\mathbf{n}} \times [ \mathbf{E_2(r)} - \mathbf{E_1(r)} ] =  - \mathbf{M_s(r)}  </math>
+
 
+
where <math>\hat{\mathbf{n}}</math> is the unit normal vector at the interface pointing from medium 1 towards medium 2, and &rho;<sub>s</sub> is the electric surface charge density, and <b>M<sub>s</sub></b> is the magnetic surface current density at the interface.
+
 
+
The magnetic field boundary conditions at the interface between two material media are:
+
 
+
<math> \hat{\mathbf{n}} . [ \mathbf{B_2(r)} - \mathbf{B_1(r)} ] = \rho_{ms} (\mathbf{r}) </math>
+
 
+
<math> \hat{\mathbf{n}} \times [ \mathbf{H_2(r)} - \mathbf{H_1(r)} ] = \mathbf{J_s(r)}  </math>
+
 
+
where <math>\hat{\mathbf{n}}</math> is the unit normal vector at the interface pointing from medium 1 towards medium 2, &rho;<sub>ms</sub> is the magnetic surface charge density, and <b>J<sub>s</sub></b> is the electric surface current density at the interface.
+
 
+
<table>
+
<tr>
+
<td> [[File:BC1.png|thumb|left|420px|The interface between two material media and definition of unit normal vector.]]
+
</td>
+
</tr>
+
</table>
+
 
+
== Maxwell's Equations in Integral Form ==
+
 
+
In certain applications, it is advantageous to cast Maxwell's equations in an integral form. These can be done using the theorems of vector calculus. In an isotropic, time-invariant and homogeneous medium, the integral forms of Maxwell's equations are given by:
+
 
+
:<math> \int\int_S \mathbf{D} . \mathbf{ds} = \int\int\int_V \rho dv </math>
+
 
+
:<math> \int\int_S \mathbf{B} . \mathbf{ds} = \int\int\int_V \rho_m dv </math>
+
 
+
:<math> \int_C \mathbf{E} . \mathbf{dl} = - \dfrac{\partial}{\partial t} \int\int_S \mathbf{B} . \mathbf{ds} - \int\int_S \mathbf{M} . \mathbf{ds} </math>
+
 
+
:<math> \int_C \mathbf{H} . \mathbf{dl} =  \dfrac{\partial}{\partial t} \int\int_S \mathbf{D} . \mathbf{ds} - \int\int_S \mathbf{J} . \mathbf{ds} </math>
+
 
+
where V is a closed region of the space, S the surface boundary and C is a path.
+
 
+
== Time-Harmonic Form of Maxwell's Equations ==
+
 
+
In a time-harmonic system operating at a given frequency f, the time dependence of the fields takes the form of <math> e^{j\omega t} </math>, where <math> j = \sqrt{-1} </math>, and &omega; = 2&pi;f is the angular frequency. In that case, the time derivative is <math> {\partial}/{\partial t} = j\omega </math>, and Maxwell's curl equations reduce to:
+
 
+
:<math> \nabla \times \mathbf{E} = - j\omega \mathbf{B} - \mathbf{M} </math>
+
 
+
:<math> \nabla \times \mathbf{H} = j\omega \mathbf{D} + \mathbf{J} </math>
+
 
+
and the continuity equations reduce to:
+
 
+
:<math> \nabla . \mathbf{J} = j\omega \rho </math>
+
 
+
:<math> \nabla . \mathbf{M} = j\omega \rho_m </math>
+
 
+
The wave equations then reduce to the Helmholtz equations given by:
+
+
:<math> \nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0 </math>
+
 
+
:<math> \nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0 </math>
+
 
+
where <math> k = \omega \sqrt{\epsilon \mu} </math> is the propagation constant in the medium. 
+
 
+
== Electric and Magnetic Potentials ==
+
 
+
Under the time-harmonic assumption, the electric and magnetic fields can further be expressed in terms of an electric scalar potential &Phi;, a magnetic scalar potential &Psi;, a vector electric potential '''F''' and a vector magnetic potential '''A''' in the following form:
+
 
+
:<math> \mathbf{E(r)} = - \nabla \times \mathbf{F(r)} - \nabla \Phi(\mathbf{r}) - j\omega\mu \mathbf{A(r)} </math>
+
 
+
:<math> \mathbf{H(r)} = \nabla \times \mathbf{A(r)} - \nabla \Psi(\mathbf{r}) - j\omega\epsilon \mathbf{F(r)} </math>
+
 
+
with the additional gauge relations:
+
 
+
:<math> \nabla \times \mathbf{A(r)} = - j\omega\epsilon \Phi(\mathbf{r}) </math>
+
 
+
:<math> \nabla \times \mathbf{F(r)} = - j\omega\mu \Psi(\mathbf{r}) </math>
+
 
+
All the potential functions satisfy the Helmholtz equation:
+
 
+
:<math> \nabla^2 \mathbf{A} + k^2 \mathbf{A} = - \mathbf{J} </math>
+
 
+
:<math> \nabla^2 \mathbf{F} + k^2 \mathbf{F} = - \mathbf{M} </math>
+
 
+
:<math> \nabla^2 \Phi + k^2 \Phi = - \frac{\rho}{\epsilon} </math>
+
 
+
:<math> \nabla^2 \Psi + k^2 \Psi = - \frac{\rho_m}{\mu} </math>
+
 
+
Sometimes it is useful to define the Hertz vector potentials as:
+
 
+
:<math> \mathbf{\Pi_e} = \frac{1}{j\omega\epsilon} \mathbf{A(r)} </math>
+
 
+
:<math> \mathbf{\Pi_m} = \frac{1}{j\omega\mu} \mathbf{F(r)} </math>
+
 
+
In that case, the electric and magnetic fields can be fully expressed in terms of these two vector potentials:
+
 
+
:<math> \mathbf{E(r)} = -j\omega\mu \nabla \times \mathbf{\Pi_m} + k^2 \mathbf{\Pi_e} + \nabla \nabla . \mathbf{\Pi_e} </math>
+
 
+
:<math> \mathbf{H(r)} = j\omega\epsilon\nabla \times \mathbf{\Pi_e} + k^2 \mathbf{\Pi_m} + \nabla \nabla . \mathbf{\Pi_m} </math>
+
 
+
{{Note|For historical reasons, it is customary in electrostatic problems to directly set the magnetic flux density '''B'''  equal to &nabla; &times; '''A'''. [[EM.Cube]]'s Static Module ([[EM.Ferma]]) uses that convention for definition of the vector magnetic potential '''A''', which is different by a factor of &mu; from the definition of the '''A''' vector in the electrodynamic discussion presented in this section. That would also change the source term of the Helmholtz equation by the same factor.}} 
+
 
+
== Green’s Function Representations ==
+
 
+
The Green’s functions are the analytical solutions of boundary value problems when they are excited by an elementary source. This is usually an infinitesimally small vectorial point source.  The total electric ('''E''') field and total magnetic ('''H''') field can be expressed in terms of the volume electric current source '''J''' and volume magnetic current source '''M''' in the following way:
+
 
+
:<math> \mathbf{E = E^{inc}} +  \mathbf{\iiint_{V_J} \overline{\overline{G}}_{EJ}(r|r') \cdot J(r') } d \nu' +  \mathbf{\iiint_{V_M} \overline{\overline{G}}_{EM}(r|r') \cdot M(r') } d \nu' </math>
+
 
+
 
+
:<math> \mathbf{H = H^{inc}} +  \mathbf{\iiint_{V_J} \overline{\overline{G}}_{HJ}(r|r') \cdot J(r') } d \nu' +  \mathbf{\iiint_{V_M} \overline{\overline{G}}_{HM}(r|r') \cdot M(r') } d \nu' </math>
+
<!--[[File:PMOM1(1).png]]-->
+
 
+
 
+
where '''E<sup>inc</sup>''' and '''H<sup>inc</sup>''' are the incident electric and magnetic fields, respectively, and V<sub>J</sub> and V<sub>M</sub> are the volumes containing the electric and magnetic current sources, respectively. The above equations involve four dyadic Green's functions types: dyadic electric-field Green’s functions due to electric current sources '''G<sub>EJ</sub>''', dyadic magnetic-field Green’s functions due to electric current sources '''G<sub>HJ</sub>''', dyadic electric-field Green’s functions due to magnetic current sources '''G<sub>EM</sub>''', and dyadic magnetic-field Green’s functions due to magnetic current sources '''G<sub>HM</sub>''' . The incident or impressed fields represent the source terms and provide the excitation of the structure.
+
 
+
In order for the Green’s functions to be computationally useful, they must have analytical closed forms. This can be a mathematical expression or a more complex recursive process. It is no surprise that only very few electromagnetic boundary value problems have closed-form Green’s functions. Among [[EM.Cube]]'s computational modules, [[EM.Libera]] is based on the free-space Green's functions, whereas [[EM.Picasso]] is based on the dyadic Green's functions of an arbitrary multilayer planar structure.
+
 
+
== Free-Space Field Solutions ==
+
 
+
The simplest background structure is the unbounded free space, which is represented by the following Green’s function:
+
 
+
:<math> \mathbf{ \overline{\overline{G}}_{EJ}(r|r') = (\overline{\overline{I}} + \nabla\nabla) } G_{\Lambda} (\mathbf{r|r'}), \quad G_{\Lambda} (\mathbf{r|r'}) = \frac{ e^{-jk_0 \mathbf{|r-r'|}} }{ 4\pi \mathbf{|r-r'|} } </math>
+
<!--[[File:03_freespace_tn.gif]]-->
+
 
+
where <math>\mathbf{\overline{\overline{I}}}</math> is the unit dyad, <math>\nabla</math> is the gradient operator, '''r''' and '''r'''' are the position vectors of the observation and source points, respectively, and k<sub>0</sub> is the free-space propagation constant. This implies that electromagnetic waves propagate in free space in a spherical form away from the source. Note that the Green’s function has a singularity at the source, <i>i.e.</i> when '''r''' = '''r''''.
+
 
+
Assuming electric and magnetic surface current sources '''J''' and '''M''' residing on surfaces S<sub>J</sub> and S<sub>M</sub>, respectively, the near-field equations reduce to:
+
 
+
 
+
:<math> \begin{align} \mathbf{ E(r) = E^{inc}(r) }  & - jk_0 Z_0 \iint_{S_J} \left\{ \left[ 1 - \frac{j}{k_0 R} - \frac{1}{(k_0 R)^2} \right] \mathbf{J(r')} -  \left[ 1 - \frac{3j}{k_0 R} - \frac{3}{(k_0 R)^2} \right] \mathbf{ (\hat{R} \cdot J(r')) \hat{R} } \right\} \frac{e^{-jk_0 R}}{4\pi R} ds' \\ & + jk_0 \iint_{S_M} \left[ 1-\frac{j}{k_0 R} \right] \mathbf{ (\hat{R} \times M(r')) } \frac{e^{-jk_0 R}}{4\pi R} ds' \end{align} </math>
+
 
+
 
+
:<math> \begin{align} \mathbf{ H(r) = H^{inc}(r) }  & - jk_0 Y_0 \iint_{S_M} \left\{ \left[ 1 - \frac{j}{k_0 R} - \frac{1}{(k_0 R)^2} \right] \mathbf{M(r')} -  \left[ 1 - \frac{3j}{k_0 R} - \frac{3}{(k_0 R)^2} \right] \mathbf{ (\hat{R} \cdot M(r')) \hat{R} } \right\} \frac{e^{-jk_0 R}}{4\pi R} ds' \\ & - jk_0 \iint_{S_J} \left[ 1-\frac{j}{k_0 R} \right] \mathbf{ (\hat{R} \times J(r')) } \frac{e^{-jk_0 R}}{4\pi R} ds' \end{align} </math>
+
<!--[[File:PO7.png]]-->
+
 
+
 
+
where <math> R=|r-r'| \text{, } k_0 = \frac{2\pi}{\lambda_0} \text{ and } Z_0 = 1/Y_0 = \eta_0 </math>.
+
  
 
<br />
 
<br />
Line 201: Line 32:
 
<hr>
 
<hr>
  
[[Image:Top_icon.png|48px]] '''[[#Maxwell's Equations in Differential Form | Back to the Top of the Page]]'''
+
[[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
 
+
[[Image:Back_icon.png|40px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
+

Latest revision as of 02:38, 17 June 2018

Maxwell1.png
Cube-icon.png Cad-ico.png Fdtd-ico.png Prop-ico.png Static-ico.png Planar-ico.png Metal-ico.png Po-ico.png


The following links provide a basic review of electromagnetic theory and the various numerical techniques used by EM.Cube's simulation engines:

Basic Electromagnetic Theory

The Far-Field Approximation for Radiation & Scattering Problems

Basic Principles of The Finite Difference Time Domain Method

Basic Principles of SBR Ray Tracing

Basic Principles of The Method of Moments

Basic Principles of Physical Optics

Basic Principles of Electrostatic & Magnetostatic Field Analysis

Basic Principles of Steady-State Thermal Analysis


Attention icon.png The above pages contain a large number of mathematical expressions and equations. Sometimes, the mathematical notations might not load properly the first time you open a page. In that case, you need to use the "reload" or "update" feature of your web browser to refresh the page, or return to the gateway page and try to open the link one more time.



Back icon.png Back to EM.Cube Main Page