Changes

Jump to: navigation, search

EM.Terrano

658 bytes added, 05:21, 22 July 2018
/* Polarimetric Channel Analysis */
From a theoretical point of view, the radiation patterns of the transmit and receive antennas are independent of the propagation channel characteristics. For the given locations of the point transmitters and receivers, one can assume ideal isotropic radiators at these points and compute the polarimetric transfer function matrix of the propagation channel. This matrix relates the received electric field at each receiver location to the transmitted electric field at each transmitter location. In general, the vectorial electric field of each individual ray is expressed in the local standard spherical coordinate system at the transmitter and receiver locations. In other words, the polarimetric channel matrix expresses the '''E<sub>&theta;</sub>''' and '''E<sub>&phi;</sub>''' field components associated with each ray at the receiver location to its '''E<sub>&theta;</sub>''' and '''E<sub>&phi;</sub>''' field components at the transmitter location. Each ray has a delay and &theta; and &phi; angles of departure at the transmitter location and &theta; and &phi; angles of departure at the receiver location.
 
To perform a polarimatric channel characterization of your propagation scene, open EM.Terrano's Run Simulation dialog and select '''Channel Analyzer''' from the drop-down list labeled '''Select Solver or Simulation Type'''. At the end of the simulation, a large ray database is generated with two data files called "sbr_channel_matrix.DAT" and "sbr_ray_path.DAT". The former file contains the delay, angles of arrival and departure and complex-valued elements of the channel matrix for all the individual rays that leave each transmitter and arrive at each receiver. The latter file contains the geometric aspects of each ray such as hit point coordinates.
=== Changing the SBR Engine Settings ===
28,333
edits