Changes

EM.Picasso

26 bytes removed, 03:06, 6 September 2016
/* Setting Numerical Parameters */
=== Setting Numerical Parameters ===
A planar MoM simulation involves a number of numerical [[parameters]] that take preset default values unless you change them. You can access these [[parameters]] and change their values by clicking the '''Settings''' button next to the '''Select Engine''' dropdown drop-down list in the [[Planar Module]]EM.Picasso's Simulation Run dialog. In most cases, you do not need to open this dialog and you can leave all the default numerical parameter values intact. However, it is useful to familiarize yourself with these [[parameters]], as they may affect the accuracy of your numerical results.
The Planar MoM Engine Settings Dialog is organized in a number of sections. Here we describe some of the numerical [[parameters]]. The &quot;'''Matrix Fill'''&quot; section of the dialog deals with the operations involving the dyadic Green's functions. You can set a value for the '''Convergence Rate for Integration''', which is 1E-5 by default. This is used for the convergence test of all the infinite integrals in the calculation of the Hankel transform of spectral-domain dyadic Green's functions. When the substrate is lossy, the surface wave poles are captured in the complex integration plane using contour deformation. You can change the maximum number of iterations involved in this deformed contour integration, whose default value is 20. When the substrate is very thin with respect to the wavelength, the dyadic Green's functions exhibit numerical instability. Additional singularity extraction measures are taken to avoid numerical instability but at the expense of increased computation time. By default, a thin substrate layer is defined to a have a thickness less than 0.01&lambda;<sub>eff</sub>, where &lambda;<sub>eff</sub> is the effective wavelength. You can modify the definition of &quot;Thin Substrate&quot; by entering a value for '''Thin Substrate Threshold''' different than the default 0.01. The parameter '''Max Coupling Range''' determines the distance threshold in wavelength between the observation and source points after which the Green's interactions are neglected. This distance by default is set to 1,000 wavelengths. For electrically small structures, the phase variation across the structure may be negligible. In such cases, a fast quasi-static analysis can be carried out. You can set this threshold in wavelengths in the box labeled '''Max Dimensions for Quasi-Static Analysis'''.
In the &quot;Spectral Domain Integration&quot; section of the dialog, you can set a value to '''Max Spectral Radius in k0''', which has a default value of 30. This means that the infinite spectral-domain integrals in the spectral variable k<sub>&rho;</sub> are pre-calculated and tabulated up to a limit of 30k<sub>0</sub>, where k<sub>0</sub> is the free space propagation constant. These integrals may converge much faster based on the specified Convergence Rate for Integration described earlier. However, in certain cases involving highly oscillatory integrands, much larger integration limits like 100k<sub>0</sub> might be needed to warrant adequate convergence. For spectral-domain integration along the real k<sub>&rho;</sub> axis, the interval [0, Nk<sub>0</sub>] is subdivided into a large number of sub-intervals, within each an 8-point Gauss-Legendre quadrature is applied. The next parameter, '''No. Radial Integration Divisions per k<sub>0</sub>''', determines how small these intervals should be. By default, 2 divisions are used for the interval [0, k<sub>0</sub>]. In other words, the length of each integration sub-interval is k<sub>0</sub>/2. You can increase the resolution of integration by increasing this value above 2. Finally, instead of 2D Cartesian integration in the spectral domain, a polar integration is performed. You can set the '''No. of Angular Integration Points''', which has a default value of 100.
28,333
edits