Changes

Glossary of EM.Cube's Python Functions

4,114 bytes added, 22:22, 11 June 2018
<table>
<tr>
<td>[[image:Cube-icon.png | link=Getting_Started_with_EM.Cube]] [[image:cad-ico.png | link=Building_Geometrical_Constructions_in_CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]]</td>
<tr>
</table>
[[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
<br />
 
== Standard Python Operators ==
|}
== Standard Basic Mathematical Python Functions ==
{| class="wikitable"
| Hyperbolic tangent function
| -
|-
| np.floor(x)
| Std. Python function
| Floor function
| nearest integer <= x
|-
| np.arcsinh(x)
| Inverse hyperbolic tangent function
| -
|-
| np.floor(x)
| Std. Python function
| Floor function
| nearest integer <= x
|}
|}
== EM.Cube's Miscellaneous Native Python Functions ==
{| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description!scopeactivate="col"| Notes|-| style="width:80px;" | rect(x)| style="width:150px;" | EMAG Python function| style="width:270px;" | Rectangle function| style="width:270px;" | 1 if |x|&le;0.5, 0 elsewhere |-| tri(x)| EMAG Python function| Triangle function| 1 if |1-x|&le;1, 0 elsewhere |-| spline2(x)| EMAG Python function| Quadratic spline function| -|-| spline3(x)| EMAG Python function| Cubic spline function| -|-| step(x)| EMAG Python function| Step function| 1 if x>0, 0 if x<0|-| sgn(x)| Std. Python function| Sign function| 1 if x>0, -1 if x<0|-| ramp(x)| EMAG Python function| Ramp function| x if x>0, 0 if x<0|-| sqr_wave(x)| EMAG Python function| Square wave function| -|-| tri_wave(x)| EMAG Python function| Triangle wave function| -|-| sawtooth(x)| EMAG Python function| Sawtooth wave function| -|-| sinc(x)| EMAG Python function| Sinc function| sin(pi*x)/(pi*x)|-| gauss(x,mu,sigma)| EMAG Python function| Gaussian function of mean mu and standard deviation sigma| exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi)|-| msin(x,r)| EMAG Python function| super-quadratic sine function of order r| -|-| mcos(x,r)| EMAG Python function| super-quadratic cosine function of order r| -|-| sigmoid(x,a)| EMAG Python function| Sigmoid function of slope a| 2/(1 + exp(-a*x)) - 1|-| bh_window(x,T)| EMAG Python function| Blackman-Harris window function| -|-| bh_step(x,T)| EMAG Python function| Blackman-Harris step function| -|-| rand(x,y)| EMAG Python function| Random function| -|-| rosen(x,y,a,b)| EMAG Python function| Rosenbrock function| (a-x)**2 + b*(y-x**2)**2|-| mean(x,y)| EMAG Python function| arithmetic mean of x and y| 0.5*(x+y)|-| geo(x,y)| EMAG Python function| geometric mean of x and y| sqrt(x*y)|-| harm(x,y)| EMAG Python function| harmonic mean of x and y| 2/(1/x+1/y)|-| sqr2(x,y)| EMAG Python function| sum of squares of x and y| x**2 + y**2|-| sqr3(x,y,z)| EMAG Python function| sum of squares of x and y and z| x**2 + y**2 + z**3|-| sqrt2(x,y)| EMAG Python function| radius of 2D point (x,y)| sqrt(x**2 + y**2)|-| sqrt3(x,y,z)| EMAG Python function| radius of 3D point (x,y,z)| sqrt(x**2 + y**2 + z**3)|}
== EM.Cube's Design Python Functions ==SYNTAX: activate({{ArgTypeString}} group_node_label)
{| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description!scope="col"| Notes|-| style="widthEXAMPLE:100px;" | microstrip_design''activate(z0,er)| style="width:150px;Color_1" | EMAG Python function| style="width:250px;" | Returns the width-to-height ratio of a microstrip transmission line | style="width:250px;" | z0: characteristic impedance in Ohms, er: substrate permittivity|-| style="width:100px;" | microstrip_z0(w,h,er)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the characteristic impedance of a microstrip transmission line in Ohms | style="width:250px;" | w: microstrip width, h: substrate height, er: substrate permittivity|-| style="width:100px;" | microstrip_eps_eff(w,h,er)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the effective permittivity of a microstrip transmission line | style="width:250px;" | w: microstrip width, h: substrate height, er: substrate permittivity|-| style="width:100px;" | microstrip_lambda_g(w,h,er,freq_hertz)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the guide wavelength of a microstrip transmission line in meters| style="width:250px;" | w: microstrip width, h: substrate height, er: substrate permittivity, freq_hertz: frequency in Hz|-| style="width:100px;" | cpw_design_w(z0,s,h,er)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the slot width of a coplanar waveguide (CPW) transmission line | style="width:250px;" | z0: characteristic impedance in Ohms, s: center strip width (or slot spacing), h: substrate height, er: substrate permittivity|-| style="width:100px;" | cpw_design_s(z0,w,h,er)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the center strip width (or slot spacing) of a coplanar waveguide (CPW) transmission line | style="width:250px;" | z0: characteristic impedance in Ohms, w: slot width, h: substrate height, er: substrate permittivity|-| style="width:100px;" | coaxial_design(z0,er)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the ratio of radius of the outer conductor to the radius of the inner conductor of a coaxial transmission line | style="width:250px;" | z0: characteristic impedance in Ohms, er: core permittivity|-| style="width:100px;" | waveguide_design(er,freq_hertz)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the minimum larger dimension in meter of the cross section of a hollow rectangular waveguide above cutoff | style="width:250px;" | er: filling permittivity, freq_hertz: frequency in Hz|-| style="width:100px;" | horn_design_a(D0_dB,a_lambda,b_lambda)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the wavelength-normalized larger dimension of the aperture of an optimal pyramidal horn antenna | style="width:250px;" | D0_dB: directivity d, a_lambda: wavelength-normalized larger dimension of the feed waveguide, b_lambda: wavelength-normalized smaller dimension of the feed waveguide |-| style="width:100px;" | horn_design_b(D0_dB,a_lambda,b_lambda)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the wavelength-normalized smaller dimension of the aperture of an optimal pyramidal horn antenna | style="width:250px;" | D0_dB: directivity d, a_lambda: wavelength-normalized larger dimension of the feed waveguide, b_lambda: wavelength-normalized smaller dimension of the feed waveguide |-| style="width:100px;" | horn_design_l(D0_dB,a_lambda,b_lambda)| style="width:150px;" | EMAG Python function| style="width:250px;" | Returns the wavelength-normalized length of an optimal pyramidal horn antenna | style="width:250px;" | D0_dB: directivity d, a_lambda: wavelength-normalized larger dimension of the feed waveguide, b_lambda: wavelength-normalized smaller dimension of the feed waveguide |}''
DESCRIPTION: Activates a color, material or object group in the current active [[EM.Cube]] module for insertion of new objects.  == ==add_variable==== SYNTAX: add_variable({{ArgTypeString}} var_name, {{ArgTypeAny}} value) EXAMPLE: ''add_variable("MyVar",1)'' DESCRIPTION: Adds a new variable to [[EM.Cube]]'s Python Functions for Geometric Object Creation ==variable list.
====array====
DESCRIPTION: Creates or modifies an array object and sets its local coordinate system and rotation angles.
 
====background_layer====
 
SYNTAX: background_layer({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} thickness)
 
EXAMPLE: ''background_layer("Mid_Layer",3.3,0.001,1,1.5)''
 
DESCRIPTION: Adds a new substrate layer to [[EM.Picasso]]'s background layer stackup.
 
====base_point_group====
 
SYNTAX: base_point_group({{ArgTypeString}} label)
 
EXAMPLE: ''base_point_set("BP_Set_1")''
 
DESCRIPTION: Creates a base point set in [[EM.Terrano]]. If the base point set group 'label' already exists, the group is activated.
 
====bh_step====
 
SYNTAX: bh_step({{ArgTypeReal}} x, {{ArgTypeReal}} T)
 
EXAMPLE: ''bh_step(0.5,1)''
 
DESCRIPTION: Computes and returns the Blackman-Harris step function.
 
====bh_window====
 
SYNTAX: bh_window({{ArgTypeReal}} x, {{ArgTypeReal}} T)
 
EXAMPLE: ''bh_window(0.5,1)''
 
DESCRIPTION: Computes and returns the Blackman-Harris window function.
====box====
DESCRIPTION: Draws a box object in the project workspace under the currently activated material group node, or modifies the box named 'label' if it already exists.
 
====capacitance====
 
SYNTAX: capacitance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)
 
EXAMPLE: ''capacitance("FI_1",-10,-10,5,10,10,10,0,0,-10,0,0,10)''
 
DESCRIPTION: Creates a capacitance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.
 
====capacitor====
 
SYNTAX: capacitor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} capacitance_pF)
 
EXAMPLE: ''capacitor("Cap_1","Line_1",25,10)''
 
DESCRIPTION: Creates a capacitor in [[EM.Tempo]]. If the capacitor 'label' already exists, its properties are modified.
 
====charge_group====
 
SYNTAX: charge_group({{ArgTypeString}} label, {{ArgTypeAny}} density)
 
EXAMPLE: ''charge_group("Charge_1",-1e-5)''
 
DESCRIPTION: Creates a volume charge source group in [[EM.Ferma]]. If the charge group 'label' already exists, the group is activated.
====circ_strip====
DESCRIPTION: Draws a circular curve object in the project workspace under the currently activated material group node, or modifies the circle named 'label' if it already exists. The parameters start_angle and end_angle are in degrees.
 
====clone====
 
SYNTAX: clone({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeReal}} x0, {{ArgTypeReal}} y0, {{ArgTypeReal}} z0)
 
EXAMPLE: ''clone("NewObj","MyObj",10,10,0)''
 
DESCRIPTION: Creates a copy of the specified object and repositions it at the given coordinates.
 
====close_curve====
 
SYNTAX: close_curve({{ArgTypeString}} label, {{ArgTypeString}} close_state)
 
EXAMPLE: ''close_curve("Curve_1",1)''
 
DESCRIPTION: Sets the open/close state of a polyline or NURBS curve. Use 0 for open curve and 1 for close curve.
 
====coaxial_design====
 
SYNTAX: coaxial_design({{ArgTypeReal}} z0, {{ArgTypeReal}} er)
 
EXAMPLE: ''coaxial_design(50,2.2)''
 
DESCRIPTION: Computes and returns the ratio of the radius of the outer conductor to the radius of the inner conductor of a coaxial transmission line of characteristic impedance z0 (in Ohms) with core relative permittivity er.
 
====coaxial_src====
 
SYNTAX: coaxial_src({{ArgTypeString}} label, {{ArgTypeAny}} cylinder_object, {{ArgTypeAny}} outer_radius, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
 
EXAMPLE: ''coaxial_src("COAX_1","Cyl_1",1.5,"+z")''
 
DESCRIPTION: Creates a coaxial port source in [[EM.Tempo]]. If the coaxial port 'label' already exists, its properties are modified.
 
====color_group====
 
SYNTAX: color_group({{ArgTypeString}} label)
 
EXAMPLE: ''color_group("Color_1")''
 
DESCRIPTION: Creates a color group in CubeCAD module. If the color group 'label' already exists, the group is activated.
 
====conduction_current_integral====
 
SYNTAX: conduction_current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)
 
EXAMPLE: ''conduction_current_integral("FI_1",-10,-10,0,10,10,0)''
 
DESCRIPTION: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.
 
====conductive_sheet_group====
 
SYNTAX: conductive_sheet_group({{ArgTypeString}} label, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thickness)
 
EXAMPLE: ''conductive_sheet_group("Cond_1",100, 0.01)''
 
DESCRIPTION: Creates a conductive sheet group in [[EM.Picasso]]. If the conductive sheet group 'label' already exists, the group is activated.
====cone====
DESCRIPTION: Draws a cone object in the project workspace under the currently activated material group node, or modifies the cone named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cone's azimuth axis.
 
====consolidate====
 
SYNTAX: consolidate({{ArgTypeString}} object)
 
EXAMPLE: ''consolidate("Poly_1")''
 
DESCRIPTION: Consolidates a specified object.
 
====cpw_design_s====
 
SYNTAX: cpw_design_s({{ArgTypeReal}} z0, {{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er)
 
EXAMPLE: ''cpw_design_s(50,2,0.5,2.2)''
 
DESCRIPTION: Computes and returns the center strip width (in meters) of a CPW transmission line of characteristic impedance z0 with slot width w, substrate height h and substrate relative permittivity er.
 
====cpw_design_w====
 
SYNTAX: cpw_design_w({{ArgTypeReal}} z0, {{ArgTypeReal}} s, {{ArgTypeReal}} h, {{ArgTypeReal}} er)
 
EXAMPLE: ''cpw_design_w(50,1,0.5,2.2)''
 
DESCRIPTION: Computes and returns the slot width (in meters) of a CPW transmission line of characteristic impedance z0 with center strip width s, substrate height h and substrate relative permittivity er.
 
====cpw_src====
 
SYNTAX: cpw_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} spacing, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
 
EXAMPLE: ''cpw_src("CPW_1","Rect_1",1.5,"+x")''
 
DESCRIPTION: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already exists, its properties are modified.
 
====cubecad_mesh_settings====
 
SYNTAX: cubecad_mesh_settings({{ArgTypeAny}} edge_length, {{ArgTypeAny}} angle_tol)
 
EXAMPLE: ''cubecad_mesh_settings(5,10)''
 
DESCRIPTION: Sets the parameters of CubeCAD's mesh generator.
 
====current_dist====
 
SYNTAX: current_dist({{ArgTypeString}} label)
 
EXAMPLE: ''current_dist("CD_1")''
 
DESCRIPTION: Creates a current distribution observable. If the observable 'label' already exists, its properties are modified.
 
====current_integral====
 
SYNTAX: current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)
 
EXAMPLE: ''current_integral("FI_1",-10,-10,0,10,10,0)''
 
DESCRIPTION: Creates a current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.
====cylinder====
DESCRIPTION: Draws a cylinder object in the project workspace under the currently activated material group node, or modifies the cylinder named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cylinder's azimuth axis.
 
====delete====
 
SYNTAX: delete({{ArgTypeString}} node_name)
 
EXAMPLE: ''delete("Box_1")''
 
DESCRIPTION: Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group.
 
====delete_background_layer====
 
SYNTAX: delete_background_layer({{ArgTypeString}} label)
 
EXAMPLE: ''delete_background_layer("Mid_Layer")''
 
DESCRIPTION: Deletes a finite-thickness substrate layer from [[EM.Picasso]]'s background layer stackup.
 
====dielectric_group====
 
SYNTAX: dielectric_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho)
 
EXAMPLE: ''dielectric_group("Dielectric_1","my_eps",0,1,0)''
 
DESCRIPTION: Creates a dielectric material group in the current module with the specified material properties. If the dielectric group 'label' already exists, the group is activated.
 
====diode====
 
SYNTAX: diode({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} polarity, {{ArgTypeAny}} is_fA, {{ArgTypeAny}} temperature_K, {{ArgTypeAny}} ideality_factor)
 
EXAMPLE: ''diode("Diode_1","Line_1",25,0,10,300,1)''
 
DESCRIPTION: Creates a diode in [[EM.Tempo]]. If the diode 'label' already exists, its properties are modified.
 
====distributed_src====
 
SYNTAX: distributed_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} field_dir, {{ArgTypeAny}} profile[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
 
EXAMPLE: ''distributed_src("DS_1","Rect_1","+y","uniform")''
 
DESCRIPTION: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already exists, its properties are modified.
====ellipse_strip====
DESCRIPTION: Draws an ellipsoid object in the project workspace under the currently activated material group node, or modifies the ellipsoid named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipsoid's azimuth axis.
====export_dxfemferma_engine_settings====
SYNTAX: export_dxfemferma_engine_settings({{ArgTypeString}} file_namematrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)
EXAMPLE: ''export_dxfemferma_engine_settings("MyDXFModel.DXFbicg-stab",1e-3,100)''
DESCRIPTION: Exports Sets the physical structure parameters of the project workspacean to a DXF model file[[EM. If the file path is not specified, the current project folder is assumed as the pathFerma]]'s electrostatic and magnetostatic simulation engines.
====export_pyemferma_mesh_settings====
SYNTAX: export_pyemferma_mesh_settings({{ArgTypeStringArgTypeAny}} file_namecell_size_x, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z)
EXAMPLE: ''export_pyemferma_mesh_settings("MyPYModel0.PY"5,0.5,0.5)''
DESCRIPTION: Exports Sets the physical structure parameters of the project workspace or the current object selection to a Python geometry file[[EM. The default path is the Python subfolder under "Documents &rarr; EMAG"Ferma]]'s fixed-cell mesh generator.
====export_stlemillumina_engine_settings====
SYNTAX: export_stlemillumina_engine_settings({{ArgTypeString}} file_nameengine, {{ArgTypeAny}} is_fixed_iteration, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)
EXAMPLE: ''export_stlemillumina_engine_settings("MySTLModel.STLipo",0,1e-2,20)''
DESCRIPTION: Exports Sets the physical structure parameters of the project workspacean to an STL model file[[EM. If the file path is not specified, the current project folder is assumed as the pathIllumina]]'s Physical Optics simulation engine.
====fractal_treeemillumina_mesh_settings====
SYNTAX: fractal_treeemillumina_mesh_settings({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} key_type, {{ArgTypeAny}} key_size, {{ArgTypeAny}} n_level, {{ArgTypeAny}} sep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factorcells_per_lambda)
EXAMPLE: ''fractal_treeemillumina_mesh_settings("Fractal_1",0,0,0,"line",10,3,30,3,0,0,0)''
DESCRIPTION: Generates a fractal tree in Sets the project workspace under the currently activated material group node, or modifies the fractal tree named 'labelparameters of [[EM.Illumina]]' if it already existss mesh generator.
====helixemlibera_engine_settings_smom====
SYNTAX: helixemlibera_engine_settings_smom({{ArgTypeString}} labelmatrix_solver, {{ArgTypeAny}} x0error_tol, {{ArgTypeAny}} y0max_iterations, {{ArgTypeAny}} z0ncpus, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAnyArgTypeString}} nturnsformulation, {{ArgTypeAny}} helix_diralpha)
EXAMPLE: ''helixemlibera_engine_settings_smom("Helix_1bicg",01e-3,01000,04,15,15,10"efie",0.4)''
DESCRIPTION: Draws a helical curve in Sets the project workspace under the currently activated material group node, or modifies the helix named 'label' if it already existsparameters of [[EM. The parameter "radius_inner" specifies the helixLibera]]'s radius at the beginning of the helix, and radius_outer specifies the radius at the end of the helix. If the Boolean parameter "helixl_dir" is 1, the helical curve will be drawn counter-clockwisesurface MoM simulation engines.
====hyperbolaemlibera_engine_settings_wmom====
SYNTAX: hyperbolaemlibera_engine_settings_wmom({{ArgTypeString}} labelmatrix_solver, {{ArgTypeAny}} x0error_tol, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_onlymax_iterations)
EXAMPLE: ''hyperbolaemlibera_engine_settings_wmom("Hyperbola _1bicg",01e-3,0,0,50,40,20,01000)''
DESCRIPTION: Draws a hyperbola object in Sets the project workspace under the currently activated material group node, or modifies the hyperbola named parameters of [[EM.Libera]]'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the hyperbola will be drawns wire MoM simulation engines.
====import_dxfemlibera_mesh_settings====
SYNTAX: import_dxfemlibera_mesh_settings({{ArgTypeStringArgTypeAny}} file_namecells_per_lambda)
EXAMPLE: ''import_dxfemlibera_mesh_settings("MyDXFModel.DXF"30)''
DESCRIPTION: Imports an external DXF model file to Sets the project workspaceparameters of [[EM. If the file path is not specified, the current project folder is assumed as the pathLibera]]'s mesh generator.
====import_igsempicasso_engine_settings====
SYNTAX: import_igsempicasso_engine_settings({{ArgTypeString}} file_namematrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)
EXAMPLE: ''import_igsempicasso_engine_settings("MyIGSModel.IGSbicg",1e-3,1000)''
DESCRIPTION: Imports an external IGES model file to Sets the project workspaceparameters of [[EM. If the file path is not specified, the current project folder is assumed as the pathPicasso]]'s planar MoM simulation engine.
====import_pyempicasso_mesh_settings====
SYNTAX: import_pyempicasso_mesh_settings({{ArgTypeStringArgTypeAny}} file_namecells_per_lambda)
EXAMPLE: ''import_pyempicasso_mesh_settings("MyPYModel.PY"30)''
DESCRIPTION: Imports a Python geometry file to Sets the project workspaceparameters of [[EM. The default path is the Python subfolder under "Documents &rarr; EMAG"Picasso]]'s planar hybrid mesh generator.
====import_stlemtempo_engine_settings====
SYNTAX: import_stlemtempo_engine_settings({{ArgTypeString}} file_nameengine, {{ArgTypeAny}} power_threshhold, {{ArgTypeAny}} max_timesteps)
EXAMPLE: ''import_stlemtempo_engine_settings("MySTLModel.STLsingle-precision",-50,20000)''
DESCRIPTION: Imports an external STL model file to Sets the project workspaceparameters of [[EM. If the file path is not specified, the current project folder is assumed as the pathTempo]]'s FDTD simulation engine.
====import_stpemtempo_mesh_settings====
SYNTAX: import_stpemtempo_mesh_settings({{ArgTypeStringArgTypeAny}} file_namecells_per_lambda, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs)
EXAMPLE: ''import_stpemtempo_mesh_settings("MySTPModel30,0.STP"1,0.1,0.02)''
DESCRIPTION: Imports an external STEP model file to Sets the project workspaceparameters of [[EM. If the file path is not specified, the current project folder is assumed as the pathTempo]]'s adaptive mesh generator.
====lineemterrano_engine_settings====
SYNTAX: lineemterrano_engine_settings({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0bounce_count, {{ArgTypeAny}} z0do_edge_diffraction, {{ArgTypeAny}} length[angular_resolution, {{ArgTypeAny}} dir]ray_threshhold)
EXAMPLE: ''lineemterrano_engine_settings("my_line"5,01,0,01,-100,"x")''
DESCRIPTION: Draws a Line object in Sets the project workspace under the currently activated material group node, or modifies the line named parameters of [[EM.Terrano]]'label' if it already exists. Without the argument "dir", a vertical line is drawn by defaults SBR simulation engine.
====nurbs_curveemterrano_mesh_settings====
SYNTAX: nurbs_curveemterrano_mesh_settings({{ArgTypeStringArgTypeAny}} labeledge_length, {{ArgType| 3x1 Python tupleArgTypeAny}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pnangle_tol)
EXAMPLE: ''nurbs_curveemterrano_mesh_settings("nc_1"5,(0,0,0),(1,0,0),(1,0,0)10)''
DESCRIPTION: Creates or modifies a NURBS Curve object in Sets the project workspaceparameters of [[EM. Each point is represented with a Python tuple type. The curve is closed if p0 is specified again as pn, otherwise, it is openTerrano]]'s facet mesh generator.
====nurbs_stripenergy_electric====
SYNTAX: nurbs_stripenergy_electric({{ArgTypeString}} label, {{ArgType| 3x1 Python tupleArgTypeAny}} p0x1, {{ArgType| 3x1 Python tupleArgTypeAny}} p1y1, ... {{ArgType| 3x1 Python tupleArgTypeAny}} pnz1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)
EXAMPLE: ''nurbs_stripenergy_electric("ns_1FI_1",(0-10,0-10,0)-10,(1,0,0),(110,010,0)10)''
DESCRIPTION: Creates or modifies a NURBS Strip object an electric energy integral observable in the project workspace[[EM. Each point is represented with a Python tuple typeFerma]]. The nurbs_strip function is If the observable 'self-closinglabel' -- there is no need to supply the first point again at the end of the point listalready exists, its properties are modified.
====parabolaenergy_magnetic====
SYNTAX: parabolaenergy_magnetic({{ArgTypeString}} label, {{ArgTypeAny}} x0x1, {{ArgTypeAny}} y0y1, {{ArgTypeAny}} z0z1, {{ArgTypeAny}} focal_lengthx2, {{ArgTypeAny}} axial_lengthy2, {{ArgTypeAny}} half_onlyz2)
EXAMPLE: ''parabolaenergy_magnetic("Parabola _1FI_1",0-10,0-10,0-10,5010,2010,010)''
DESCRIPTION: Draws Creates a parabola object magnetic energy integral observable in [[EM.Ferma]]. If the project workspace under the currently activated material group node, or modifies the parabola named observable 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the parabola will be drawnits properties are modified.
====param_curveexplode====
SYNTAX: param_curveexplode({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} model, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start, {{ArgTypeAny}} stop, {{ArgTypeAny}} step, {{ArgTypeAny}} function[, {{ArgTypeAny}} y(t), {{ArgTypeAny}} z(t)]object)
EXAMPLE: ''param_curveexplode("Curve_1",0,0,0,"parametric","xy",0,10,0.1,"cos(t)","sin(t)","tMyArray")''
DESCRIPTION: Generates a parametric curve in the project workspace under the currently activated material group node, or modifies the parametric curve named 'label' if it already existsExplodes an object into its basic primitives.
====param_surfaceexport_dxf====
SYNTAX: param_surfaceexport_dxf({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start1, {{ArgTypeAny}} stop1, {{ArgTypeAny}} step1, , {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} functionfile_name)
EXAMPLE: ''param_surfaceexport_dxf("Surf_1",0,0,0,"xy",0,10,0MyDXFModel.1,0,10,0.1,"sin(x)*sin(y)DXF")''
DESCRIPTION: Generates a parametric surface in Exports the physical structure of the project workspace under workspacean to a DXF model file. If the currently activated material group nodefile path is not specified, or modifies the parametric surface named 'label' if it already existscurrent project folder is assumed as the path.
====pointexport_py====
SYNTAX: pointexport_py({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0file_name)
EXAMPLE: ''pointexport_py("Point_1MyPYModel.PY",0,0,10)''
DESCRIPTION: Draws a point in Exports the physical structure of the project workspace under the currently activated material group node, or modifies the point named 'label' if it already existscurrent object selection to a Python geometry file. The default path is the Python subfolder under "Documents &rarr; EMAG".
====polygon_regexport_stl====
SYNTAX: polygon_regexport_stl({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sidesfile_name)
EXAMPLE: ''polygon_regexport_stl("ts_1MySTLModel.STL",0,0,0,50,100,80,1)''
DESCRIPTION: Draws a regular polygon object in Exports the physical structure of the project workspace under workspacean to an STL model file. If the currently activated material group nodefile path is not specified, or modifies the regular polygon object named 'label' if it already existscurrent project folder is assumed as the path.
====polylineextrude====
SYNTAX: polylineextrude({{ArgTypeString}} label, {{ArgType| 3x1 Python tupleArgTypeString}} p0object, {{ArgType| 3x1 Python tupleArgTypeAny}} p1extrude_height, ... {{ArgType| 3x1 Python tupleArgTypeAny}} pncap_ends)
EXAMPLE: ''polylineextrude("pl_1Extrude_1",(0,0,0),(1,0,0),(1,0"Rect_Strip1",0)50)''
DESCRIPTION: Creates or modifies an extrusion object from a PolyLine specified object in by the project workspace. Each point is represented with a Python tuple type. The poly_line is closed if p0 is specified again as pn, otherwiseheight. If modifying an existing extrusion object, it the pre-existing primitive is openused. This command can only extrude objects that have a single face and will extrude along the face's normal.
====polystripfarfield====
SYNTAX: polystripfarfield({{ArgTypeString}} label, {{ArgType| 3x1 Python tupleArgTypeAny}} p0theta_incr, {{ArgType| 3x1 Python tupleArgTypeAny}} p1, ... {{ArgType| 3x1 Python tuple}} pnphi_incr)
EXAMPLE: ''polystripfarfield("ps_1FF_1",(0,0,0),(1,0,0),(1,0,0))''
DESCRIPTION: Creates or modifies a Polystrip object in far-field radiation pattern observable. If the project workspace. Each point is represented with a Python tuple type. The poly_strip function is observable 'self-closinglabel' -- there is no need to supply the first point again at the end of the point listalready exists, its properties are modified.
====pyramidfield_probe====
SYNTAX: pyramidfield_probe({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height)
EXAMPLE: ''pyramidfield_probe("Pyramid_1FS_1",0,0,0,10,10,10050)''
DESCRIPTION: Draws Creates a pyramid object temporal field probe observable in the project workspace under the currently activated material group node, [[EM.Tempo]] or modifies [[EM.Ferma]]. If the pyramid named observable 'label' if it already exists, its properties are modified.
====radial_stripfield_sensor====
SYNTAX: radial_stripfield_sensor({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radiusxSize, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} base_lengthySamples, {{ArgTypeAny}} anglezSamples)
EXAMPLE: ''radial_stripfield_sensor("Radial_1FS_1","z",0,0,0,50100,100,0,9025,25,0)''
DESCRIPTION: Draws Creates a radial strip object in near-field sensor observable. If the project workspace under the currently activated material group node, or modifies the radial strip object named observable 'label' if it already exists, its properties are modified.
====rect_stripfield_sensor_grid====
SYNTAX: rect_stripfield_sensor_grid({{ArgTypeString}} label, {{ArgTypeAny}} x0dir_coordinate, {{ArgTypeAny}} y0x0, {{ArgTypeAny}} z0y0, {{ArgTypeAny}} side_x, {{ArgTypeAny}} side_yz0)
EXAMPLE: ''rect_stripfield_sensor_grid("my_rectangleFS_1",0"z",0,0,50,200)''
DESCRIPTION: Draws Creates a rectangle Strip object near-field sensor observable in the project workspace under the currently activated material group node, [[EM.Tempo]] or modifies [[EM.Ferma]]. If the rectangle strip object named observable 'label' if it already exists, its properties are modified.
====spherefill_curve====
SYNTAX: spherefill_curve({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]object)
EXAMPLE: ''spherefill_curve("Sphere_1Curve_1",0,0,0,10,0,180)''
DESCRIPTION: Draws a sphere object in Fill the project workspace under interior of the currently activated Material Group node, or modifies the sphere named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the sphere's azimuth axisspecified closed curve object.
====spiral_curvefillet====
SYNTAX: spiral_curvefillet({{ArgTypeString}} labelobject, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dualradius)
EXAMPLE: ''spiral_curvefillet("Spiral _1Rect_1",0,0,0,10,50,5,0,0)''
DESCRIPTION: Draws a spiral curve object in Fillets the project workspace under corners of the currently activated material group node, specified surface or modifies the spiral curve named 'label' if it already exists. If object by the Boolean parameter "spiral_dir" is 1, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawnspecified radius.
====spiral_stripflux_electric====
SYNTAX: spiral_stripflux_electric({{ArgTypeString}} label, {{ArgTypeAny}} x0x1, {{ArgTypeAny}} y0y1, {{ArgTypeAny}} z0z1, {{ArgTypeAny}} widthx2, {{ArgTypeAny}} radius_innery2, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dualz2)
EXAMPLE: ''spiral_stripflux_electric("Spiral _1FI_1",0,0,0-10,-10,50,5,010,010,10)''
DESCRIPTION: Draws a spiral strip object Creates an electric flux integral observable in [[EM.Ferma]]. If the project workspace under the currently activated material group node, or modifies the spiral strip named observable 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawnits properties are modified.
====superquadflux_magnetic====
SYNTAX: superquadflux_magnetic({{ArgTypeString}} label, {{ArgTypeAny}} x0x1, {{ArgTypeAny}} y0y1, {{ArgTypeAny}} z0z1, {{ArgTypeAny}} diam_xx2, {{ArgTypeAny}} diam_yy2, {{ArgTypeAny}} orderz2)
EXAMPLE: ''superquadflux_magnetic("SuperQuad_1FI_1",0,0,0-10,5010,200,410)''
DESCRIPTION: Draws Creates a super-quadratic curve object magnetic flux integral observable in [[EM.Ferma]]. If the project workspace under the currently activated material group node, or modifies the super-quadratic curve named observable 'label' if it already exists. If order = 2, the curve reduces to an ellipse. Higher order makes the round edges sharper. An infinite order reduces the curve to a rectangleits properties are modified.
====taper_stripfractal_tree====
SYNTAX: taper_stripfractal_tree({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_widthkey_type, {{ArgTypeAny}} top_widthkey_size, {{ArgTypeAny}} lengthn_level, {{ArgTypeAny}} is_exposep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factor)
EXAMPLE: ''taper_stripfractal_tree("ts_1Fractal_1",0,0,0,50"line",10010,803,130,3,0,0,0)''
DESCRIPTION: Draws Generates a taper strip object fractal tree in the project workspace under the currently activated material group node, or modifies the taper strip object fractal tree named 'label' if it already exists. If the Boolean parameters "is_expo" is 1, an exponential taper will be drawn.
====torusfreeze====
SYNTAX: torusfreeze({{ArgTypeString}} labelobject, {{ArgTypeAnyArgTypeReal}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]freeze_state)
EXAMPLE: ''torusfreeze("Torus_1MyObj",0,0,0,50,201)''
DESCRIPTION: Draws Sets the freeze state of an torus object in the project workspace under the currently activated material group node, or modifies the torus named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the torus's azimuth axis(0/1).
====triangle_stripgauss====
SYNTAX: triangle_stripgauss({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x0mu, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAnyArgTypeReal}} anglesigma)
EXAMPLE: ''triangle_stripgauss("ts_1",0.5,0,0,50,100,901)''
DESCRIPTION: Draws a triangle strip object in Computes and returns the project workspace under the currently activated material group node, or modifies the triangle strip object named 'label' if it already existsGaussian function of mean mu and standard deviation sigma: exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi).
== EM.Cube's Python Functions for Geometric Object Transformation ==gauss_beam====
====freeze====SYNTAX: gauss_beam({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization, {{ArgTypeAny}} focus_x, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius, {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_mode)
SYNTAXEXAMPLE: freeze''gauss_beam({{ArgTypeString}} object"PW_1", {{ArgTypeReal}} freeze_state180,0,"tm",0,0,0,20,0,0)''
EXAMPLEDESCRIPTION: Creates a Gaussian beam source in [[EM.Tempo]]. If the Gaussian beam source 'label'freeze("MyObj"already exists,1)''its properties are modified.
DESCRIPTION: Sets the freeze state of an object (0/1). ====generate_input_files====
====move_to====SYNTAX: generate_input_files()
SYNTAXEXAMPLE: move_to''generate_input_files({{ArgTypeString}} object, {{ArgTypeString}} group_node_label[, {{ArgTypeString}} module_name])''
EXAMPLEDESCRIPTION: ''move_to("NewObj","MyObj",10,10,0)''Generates all the input files for the simulation engine of the current module without running a simulation.
DESCRIPTION: Transfers an object from its current material/object group node in the navigation tree to another node or optionally to another [[EM.Cube]] module. ====geo====
====clone====SYNTAX: geo({{ArgTypeReal}} x, {{ArgTypeReal}} y)
SYNTAXEXAMPLE: clone''geo({{ArgTypeString}} label1, {{ArgTypeString}} object, {{ArgTypeReal}} x0, {{ArgTypeReal}} y0, {{ArgTypeReal}} z02)''
EXAMPLEDESCRIPTION: ''cloneComputes and returns the geometric mean of x and y: sqrt("NewObj","MyObj",10,10,0x*y)''.
DESCRIPTION: Creates a copy of the specified object and repositions it at the given coordinates. ====get_area====
====translate_by====SYNTAX: get_area({{ArgTypeString}} object)
SYNTAXEXAMPLE: translate_by''get_area({{ArgTypeString}} object, {{ArgTypeReal}} x_dist, {{ArgTypeReal}} y_dist, {{ArgTypeReal}} z_dist"ellipse_1")''
EXAMPLEDESCRIPTION: ''translate_by("MyObj",10,10,x)''Returns the area of a surface object or the total surface area of a solid object.
DESCRIPTION: Translates an object by the specified distances in each direction.====get_axis====
====translate_to====SYNTAX: get_axis({{ArgTypeString}} object, {{ArgTypeString}} axis, {{ArgTypeString}} coordinate)
SYNTAXEXAMPLE: translate_to''get_axis({{ArgTypeString}} object"pyramid_1", {{ArgTypeReal}} x_dest"x", {{ArgTypeReal}} y_dest, {{ArgTypeReal}} z_dest"y")''
EXAMPLEDESCRIPTION: ''translate_to("MyObj",20,20,x2)''Returns the specified coordinate of the unit vector along the specified local axis of an object.
DESCRIPTION: Translates an object to the specified destination.====get_domain_extent====
====rotate====SYNTAX: get_domain_extent({{ArgTypeString}} coordinate)
SYNTAXEXAMPLE: rotate''get_domain_extent({{ArgTypeString}} object, {{ArgTypeAny}} rot_angle_degree, {{ArgTypeAny}} rot_axis_x, {{ArgTypeAny}} rot_axis_y, {{ArgTypeAny}} rot_axis_z"x")''
EXAMPLEDESCRIPTION: ''rotate("pyramid_1",45,1,1,0)''Returns the size of the computational domain along the specified direction.
DESCRIPTION: Rotates an object about a line passing through its LCS center and aligned along the specified direction vector (rot_axis) by the specified angle.====get_extent====
====scale====SYNTAX: get_extent({{ArgTypeString}} object, {{ArgTypeString}} coordinate)
SYNTAXEXAMPLE: scale''get_extent({{ArgTypeString}} object"pyramid_1", {{ArgTypeAny}} scale_factor"x")''
EXAMPLEDESCRIPTION: ''scale("pyramid_1",2)''Returns the size of the bounding box of an object along the specified direction.
====get_lcs==== SYNTAX: get_lcs({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_lcs("pyramid_1","x")'' DESCRIPTION: Scales Returns the specified coordinate of the LCS of an object . ====get_lcs_offset==== SYNTAX: get_lcs_offset({{ArgTypeString}} object, {{ArgTypeAny}} x_off, {{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off, {{ArgTypeString}} coordinate) EXAMPLE: ''get_lcs_offset("box_1",50,50,0,"x")'' DESCRIPTION: Returns the specified coordinate of the LCS of an object after being translated by the specified scale factoroffset values along the three principal axes.
====get_length====
DESCRIPTION: Returns the length of a curve object.
====get_areaget_rot====
SYNTAX: get_areaget_rot({{ArgTypeString}} object, {{ArgTypeString}} coordinate)
EXAMPLE: ''get_areaget_rot("ellipse_1pyramid_1","x")''
DESCRIPTION: Returns the area specified rotation angle of a surface an object or . ====get_standard_output==== SYNTAX: get_standard_output({{ArgTypeString}} output_name)  EXAMPLE: ''get_standard_output("S11M")'' DESCRIPTION: Returns the total surface area computed value of the specified standard output parameter at the end of a solid simulation. ====get_vertex==== SYNTAX: get_vertex({{ArgTypeString}} object, {{ArgTypeAny}} node_index, {{ArgTypeString}} coordinate) EXAMPLE: ''get_vertex("pyramid_1",0,"x")'' DESCRIPTION: Returns the specified coordinate of the specified vertex of the bounding box of an object. The vertices are specified by node indices. The lower front left corner has an index of 0, while the upper back right corner has an index of 7. The indices are numbered counterclockwise, with the bottom face first and top face next.
====get_volume====
DESCRIPTION: Returns the volume of a solid object.
====get_lcsglobal_ground====
SYNTAX: get_lcsglobal_ground({{ArgTypeStringArgTypeAny}} objectground_on, {{ArgTypeStringArgTypeAny}} coordinateeps, {{ArgTypeAny}} sigma)
EXAMPLE: ''get_lcsglobal_ground("pyramid_1"1,"x"3.3,0.001)''
DESCRIPTION: Returns Set the specified coordinate state of the LCS of an object[[EM.Terrano]]'s global ground and its material properties. A zero value for ground_on means to no global ground assumed at Z = 0.
====get_rotgroup====
SYNTAX: get_rotgroup({{ArgTypeString}} objectlabel, {{ArgTypeString}} coordinateobject_1, {{ArgTypeString}} object_2, ...)
EXAMPLE: ''get_rotgroup("pyramid_1Composite_1","xBox_1","Box_2","Box_3")''
DESCRIPTION: Returns the specified rotation angle Groups a number of an objects into a composite objectwith the given label.
====get_axisharm====
SYNTAX: get_axisharm({{ArgTypeStringArgTypeReal}} objectx, {{ArgTypeStringArgTypeReal}} axis, {{ArgTypeString}} coordinatey)
EXAMPLE: ''get_axisharm("pyramid_1"1,"x","y"2)''
DESCRIPTION: Returns Computes and returns the specified coordinate harmonic mean of the unit vector along the specified local axis of an objectx and y: 2/(1/x+1/y).
====get_lcs_offsethelix====
SYNTAX: get_lcs_offsethelix({{ArgTypeString}} objectlabel, {{ArgTypeAny}} x_offx0, {{ArgTypeAny}} y_offy0, {{ArgTypeAny}} z_offz0, {{ArgTypeStringArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} coordinatehelix_dir)
EXAMPLE: ''get_lcs_offsethelix("box_1Helix_1",500,500,0,"x"15,15,10,0)''
DESCRIPTION: Returns Draws a helical curve in the specified coordinate project workspace under the currently activated material group node, or modifies the helix named 'label' if it already exists. The parameter "radius_inner" specifies the helix's radius at the beginning of the LCS helix, and radius_outer specifies the radius at the end of an object after being translated by the specified offset values along helix. If the Boolean parameter "helixl_dir" is 1, the three principal axeshelical curve will be drawn counter-clockwise.
====get_extenthorn_design_a====
SYNTAX: get_extenthorn_design_a({{ArgTypeStringArgTypeReal}} objectD0_dB, {{ArgTypeStringArgTypeReal}} coordinatea_lambda, {{ArgTypeReal}} b_lambda)
EXAMPLE: ''get_extenthorn_design_a("pyramid_1"15,"x"0.4,0.3)''
DESCRIPTION: Returns Computes and returns the size wavelength-normalized larger dimension of the bounding box aperture of an object along the specified directionoptimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda.
====get_vertexhorn_design_b====
SYNTAX: get_vertexhorn_design_b({{ArgTypeStringArgTypeReal}} objectD0_dB, {{ArgTypeAnyArgTypeReal}} node_indexa_lambda, {{ArgTypeStringArgTypeReal}} coordinateb_lambda)
EXAMPLE: ''get_vertexhorn_design_b("pyramid_1"15,0.4,"x"0.3)''
DESCRIPTION: Returns Computes and returns the specified coordinate wavelength-normalized smaller dimension of the specified vertex of the bounding box aperture of an object. The vertices are specified by node indices. The lower front left corner has an index of 0, while the upper back right corner has an index of 7. The indices are numbered counterclockwise, optimal pyramidal horn antenna with the bottom face first directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and top face nextb_lambda.
====set_rothorn_design_l====
SYNTAX: set_rothorn_design_l({{ArgTypeStringArgTypeReal}} objectD0_dB, {{ArgTypeAnyArgTypeReal}} rot_xa_lambda, {{ArgTypeAnyArgTypeReal}} rot_y, {{ArgTypeAny}} rot_zb_lambda)
EXAMPLE: ''set_rothorn_design_l("pyramid_1"15,0.4,0,45.3)''
DESCRIPTION: Sets Computes and returns the three rotation angles wavelength-normalized length of an objectoptimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda.
====set_lcs_linkhuygens_src====
SYNTAX: set_lcs_linkhuygens_src({{ArgTypeString}} objectlabel, {{ArgTypeStringArgTypeAny}} filename[, {{ArgTypeAny}} set_lcs, {{ArgTypeAny}} polarization, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} lcs_objz0, {{ArgTypeAny}} x_offx_rot, {{ArgTypeAny}} y_offy_rot, {{ArgTypeAny}} z_offz_rot])
EXAMPLE: ''set_lcs_linkhuygens_src("pyramid_1HS_1","box_1Huygens_1.HUY",501,50100,100,0,0,0,0)''
DESCRIPTION: Links Creates a Huygens source. If the LCS of the first object to the LCS of the second object by the specified offset values along the three axesHuygens source 'label' already exists, its properties are modified.
====set_rot_linkhuygens_surface====
SYNTAX: set_rot_linkhuygens_surface({{ArgTypeString}} objectlabel, {{ArgTypeStringArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} lcs_objz2, {{ArgTypeAny}} x_off_degxSamples, {{ArgTypeAny}} y_off_degySamples, {{ArgTypeAny}} z_off_degzSamples)
EXAMPLE: ''set_rot_linkhuygens_surface("pyramid_1HS_1","box_1"-10,-10,-10,10,10,10,040,040,4540)''
DESCRIPTION: Links Creates a Huygens surface observable. If the rotation angles of the LCS of the first object to the rotation angles of the LCS of the second object by the specified angle offset values in degrees along the three axesobservable 'label' already exists, its properties are modified.
====mirrorhuygens_surface_grid====
SYNTAX: mirrorhuygens_surface_grid({{ArgTypeString}} objectlabel, {{ArgTypeAny}} x0x1, {{ArgTypeAny}} y0y1, {{ArgTypeAny}} z0z1, {{ArgTypeAny}} uXx2, {{ArgTypeAny}} uYy2, {{ArgTypeAny}} uZz2)
EXAMPLE: ''mirrorhuygens_surface_grid("pyramid_1HS_1",0-10,0-10,0-10,110,010,010)''
DESCRIPTION: Mirrors an object in Creates a plane defined by Huygens surface observable in [[EM.Tempo]]. If the specified point coordinates and specified normal vector componentsobservable 'label' already exists, its properties are modified.
====grouphyperbola====
SYNTAX: grouphyperbola({{ArgTypeString}} label, {{ArgTypeStringArgTypeAny}} object_1x0, {{ArgTypeStringArgTypeAny}} object_2y0, ...{{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only)
EXAMPLE: ''grouphyperbola("Composite_1Hyperbola _1","Box_1"0,"Box_2"0,"Box_3"0,50,40,20,0)''
DESCRIPTION: Groups Draws a number of objects into a composite hyperbola object with in the given project workspace under the currently activated material group node, or modifies the hyperbola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the hyperbola will be drawn.
====explodeimpedance_surface_group====
SYNTAX: explodeimpedance_surface_group({{ArgTypeString}} objectlabel, {{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imag)
EXAMPLE: ''explodeimpedance_surface_group("MyArrayIMP_1",100,-100)''
DESCRIPTION: Explodes an object into its basic primitivesCreates a impedance_surface group in [[EM.Illumina]]. If the impedance surface group 'label' already exists, the group is activated.
====subtractimpenetrable_surface_group====
SYNTAX: subtractimpenetrable_surface_group({{ArgTypeString}} label, {{ArgTypeStringArgTypeAny}} object_1eps, {{ArgTypeStringArgTypeAny}} object_2sigma)
EXAMPLE: ''subtractimpenetrable_surface_group("Subtract_ObjectImpenet_1","Rect_Strip1"2.2,"Rect_Strip2"0.0001)''
DESCRIPTION: Creates a Boolean object named 'label' by subtracting object_2 from object_1an impenetrable surface group in [[EM.Terrano]]. An error will be thrown if a Boolean object named If the impenetrable surface group 'label' already exists, the group is activated.
====unionimport_dxf====
SYNTAX: unionimport_dxf({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2file_name)
EXAMPLE: ''unionimport_dxf("Union_Object","Rect_Strip1","Rect_Strip2MyDXFModel.DXF")''
DESCRIPTION: Imports an external DXF model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_igs==== SYNTAX: import_igs({{ArgTypeString}} file_name) EXAMPLE: ''import_igs("MyIGSModel.IGS")'' DESCRIPTION: Imports an external IGES model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_py==== SYNTAX: import_py({{ArgTypeString}} file_name) EXAMPLE: ''import_py("MyPYModel.PY")'' DESCRIPTION: Imports a Python geometry file to the project workspace. The default path is the Python subfolder under "Documents &rarr; EMAG". ====import_stl==== SYNTAX: import_stl({{ArgTypeString}} file_name) EXAMPLE: ''import_stl("MySTLModel.STL")'' DESCRIPTION: Imports an external STL model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_stp==== SYNTAX: import_stp({{ArgTypeString}} file_name) EXAMPLE: ''import_stp("MySTPModel.STP")'' DESCRIPTION: Imports an external STEP model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====inductance==== SYNTAX: inductance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''inductance("FI_1",0,0,-10,10,0,10,2.5,-2.5,0,7.5,2.5,0)'' DESCRIPTION: Creates a Boolean object named inductance integral observable in [[EM.Ferma]]. If the observable 'label' by unioning object_1 and object_2already exists, its properties are modified. An error will be thrown if  ====inductor==== SYNTAX: inductor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} inductance_nH) EXAMPLE: ''inductor("Cap_1","Line_1",25,10)'' DESCRIPTION: Creates a Boolean object named inductor in [[EM.Tempo]]. If the inductor 'label' already exists, its properties are modified.
====intersect====
DESCRIPTION: Creates a Boolean object named 'label' by intersecting object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists.
====extrudeline====
SYNTAX: extrudeline({{ArgTypeString}} label, {{ArgTypeStringArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} objectz0, {{ArgTypeAny}} extrude_heightlength[, {{ArgTypeAny}} cap_endsdir])
EXAMPLE: ''extrudeline("Extrude_1my_line",0,0,0,100,"Rect_Strip1x",50)''
DESCRIPTION: Creates or modifies an extrusion object from Draws a specified Line object by in the specified height. If modifying an existing extrusion objectproject workspace under the currently activated material group node, or modifies the pre-existing primitive is usedline named 'label' if it already exists. This command can only extrude objects that have a single face and will extrude along Without the face's normalargument "dir", a vertical line is drawn by default.
====loft====
DESCRIPTION: Creates or modifies a loft object from a specified object by the specified height. If modifying an existing loft object, the pre-existing primitive is used. This command can only loft objects that have a single face and will loft along the face's normal.
====revolvelumped_src====
SYNTAX: revolvelumped_src({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0line_object, {{ArgTypeAny}} z0offset, {{ArgTypeAny}} uXpolarity[, {{ArgTypeAny}} uYamplitude, {{ArgTypeAny}} uZphase, {{ArgTypeAny}} rot_angleresistance])
EXAMPLE: ''revolvelumped_src("Rev1LS_1","Line_1",050,0,0,0,0,1,360)''
DESCRIPTION: Creates or modifies a revolution object from a specified objectlumped source in [[EM.Tempo]]. If modifying an existing revolution object, the pre-existing primitive object is used. (x0lumped source 'label' already exists,y0,z0) specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degreesits properties are modified.
====consolidatemagnet_group====
SYNTAX: consolidatemagnet_group({{ArgTypeString}} objectlabel, {{ArgTypeAny}} mu, {{ArgTypeAny}} Mx, {{ArgTypeAny}} My, {{ArgTypeAny}} Mz)
EXAMPLE: ''consolidatemagnet_group("Poly_1Magnet_1",1,0,0,100)''
DESCRIPTION: Consolidates Creates a specified objectpermanent magnet source group in [[EM.Ferma]]. If the magnet group 'label' already exists, the group is activated.
====spline_fitmcos====
SYNTAX: spline_fitmcos({{ArgTypeStringArgTypeReal}} objectx, {{ArgTypeReal}} r)
EXAMPLE: ''spline_fitmcos("Poly_1"0.5,2)''
DESCRIPTION: Applies spline fit transformation on a specified polymesh, polyline or polystrip objectComputes and returns the super-quadratic cosine function of order r.
====fill_curvemean====
SYNTAX: fill_curvemean({{ArgTypeStringArgTypeReal}} objectx, {{ArgTypeReal}} y)
EXAMPLE: ''fill_curvemean("Curve_1"1,2)''
DESCRIPTION: Fill Computes and returns the interior arithmetic mean of the specified closed curve objectx and y: 0.5*(x+y).
====merge_curve====
DESCRIPTION: Merges two specified curve objects into a single curve.
====close_curvemesh====
SYNTAX: close_curvemesh({{ArgTypeString}} label, {{ArgTypeString}} close_state)
EXAMPLEDESCRIPTION: ''close_curve("Curve_1",1)''Generates and displays the mesh of the physical structure.
DESCRIPTION: Sets the open/close state of a polyline or NURBS curve. Use 0 for open curve and 1 for close curve.====microstrip_design====
====polygonize====SYNTAX: microstrip_design({{ArgTypeReal}} z0, {{ArgTypeReal}} er)
SYNTAXEXAMPLE: polygonize''microstrip_design({{ArgTypeString}} object50, {{ArgTypeAny}} side_length2.2)''
EXAMPLEDESCRIPTION: ''polygonize("Cric_1",2)''Computes and returns the width-to-height ratio of a microstrip transmission line with characteristic impedance z0 in Ohms and substrate relative permittivity er.
DESCRIPTION: Polygonizes the specified surface or curve object by the specified side length. The results is a polystrip or a polyline.====microstrip_eps_eff====
====polymesh====SYNTAX: microstrip_eps_eff({{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er)
SYNTAXEXAMPLE: polymesh''microstrip_eps_eff({{ArgTypeString}} label2, {{ArgTypeString}} object0.5, {{ArgTypeAny}} edge_length2.2)''
EXAMPLEDESCRIPTION: ''polymesh("Poly_1"Computes and returns the effective permittivity of a microstrip transmission line with width w,"Cric_1",2)''substrate height h and substrate relative permittivity er.
DESCRIPTION: Discretizes the specified solid or surface object by the specified edge length. The results is a polymesh object.====microstrip_lambda_g====
====fillet====SYNTAX: microstrip_lambda_g({{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
filletEXAMPLE: ''microstrip_lambda_g({{ArgTypeString}} object2, {{ArgTypeAny}} radius0.5,2.2,2e9)''
EXAMPLEDESCRIPTION: ''filletComputes and returns the guide wavelength ("Rect_1",5in meters)''of a microstrip transmission line with width w, substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
DESCRIPTION: Fillets the corners of the specified surface or curve object by the specified radius.====microstrip_src====
====slice====SYNTAX: microstrip_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} height, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
SYNTAXEXAMPLE: slice''microstrip_src({{ArgTypeString}} object"MS_1", {{ArgTypeAny}} x0"Rect_1", {{ArgTypeAny}} y01.5, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ"+x")''
EXAMPLEDESCRIPTION: Creates a microstrip port source in [[EM.Tempo]]. If the microstrip port 'label'slice("Rect_1"already exists,5)''its properties are modified.
DESCRIPTION: Slices the specified object into two parts using the specified plane given by the point coordinates and normal vector coordinates.====microstrip_z0====
====roughen====SYNTAX: microstrip_z0({{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er)
SYNTAXEXAMPLE: roughen''microstrip_z0({{ArgTypeString}} label2, {{ArgTypeString}} object0.5, {{ArgTypeAny}} rms_height, {{ArgTypeAny}} correl_length2.2)''
EXAMPLEDESCRIPTION: ''roughenComputes and returns the characteristic impedance ("Rect_1"in Ohms) of a microstrip transmission line with width w,1,5)''substrate height h and substrate relative permittivity er.
DESCRIPTION: Roughens the surface of the specified object based on the specified RMS height and correlation length.====microstrip_zoc====
====random_group====SYNTAX: microstrip_zoc({{ArgTypeReal}} w, {{ArgTypeReal}} l, {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
SYNTAXEXAMPLE: random_group''microstrip_zoc({{ArgTypeString}} label2, {{ArgTypeString}} key_object25, {{ArgTypeString}} container_object0.5, {{ArgTypeAny}} element_count2.2,2e9)''
EXAMPLEDESCRIPTION: ''random_groupComputes and returns the input reactance ("Rand_1"in Ohms) of an open-circuited microstrip transmission line with width w,"Rect_1"length l,"Box_1",100)''substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
DESCRIPTION: Creates a random group using the specified key object and confines them in the specified container object.====microstrip_zsc====
====strip_sweep====SYNTAX: microstrip_zsc({{ArgTypeReal}} w, {{ArgTypeReal}} l, {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
SYNTAXEXAMPLE: strip_sweep''microstrip_zsc({{ArgTypeString}} object2, {{ArgTypeAny}} width25,0.5,2.2,2e9)''
EXAMPLEDESCRIPTION: ''strip_sweepComputes and returns the input reactance ("Curve_1",5in Ohms)''of a short-circuited microstrip transmission line with width w, length l, substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
DESCRIPTION: Creates a strip version of a given curve object.====mirror====
====pipe_sweep====SYNTAX: mirror({{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)
SYNTAXEXAMPLE: pipe_sweep''mirror({{ArgTypeString}} object"pyramid_1", {{ArgTypeAny}} radius0,0,0,1,0,0)''
EXAMPLEDESCRIPTION: ''pipe_sweep("Curve_1",5)''Mirrors an object in a plane defined by the specified point coordinates and specified normal vector components.
DESCRIPTION: Creates a pipe version of a given curve object.====move_to====
====rail_sweep====SYNTAX: move_to({{ArgTypeString}} object, {{ArgTypeString}} group_node_label[, {{ArgTypeString}} module_name])
SYNTAXEXAMPLE: rail_sweep''move_to({{ArgTypeString}} rail_object"NewObj", {{ArgTypeString}} sweep_object"MyObj",10,10,0)''
EXAMPLEDESCRIPTION: ''rail_sweep("Curve_1","Curve_2")''Transfers an object from its current material/object group node in the navigation tree to another node or optionally to another [[EM.Cube]] module.
DESCRIPTION: Rail-sweeps the specified sweep object along the specified curve object.====msin====
== EM.Cube's Python Functions for Material or Object Group Creation ==SYNTAX: msin({{ArgTypeReal}} x, {{ArgTypeReal}} r)
====activate====EXAMPLE: ''msin(0.5,2)''
SYNTAXDESCRIPTION: activate({{ArgTypeString}} group_node_label)Computes and returns the super-quadratic sine function of order r.
EXAMPLE: ''activate("Color_1")''====nurbs_curve====
DESCRIPTIONSYNTAX: Activates a colornurbs_curve({{ArgTypeString}} label, material or object group in the current active [[EM{{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ..Cube]] module. {{ArgType| 3x1 Python tuple}} pn)
====color_group====EXAMPLE: ''nurbs_curve("nc_1",(0,0,0),(1,0,0),(1,0,0))''
SYNTAXDESCRIPTION: color_group({{ArgTypeString}} label)Creates or modifies a NURBS Curve object in the project workspace. Each point is represented with a Python tuple type. The curve is closed if p0 is specified again as pn, otherwise, it is open.
EXAMPLE: ''color_group("Color_1")''====nurbs_strip====
DESCRIPTIONSYNTAX: Creates a color group in CubeCAD module. If the color group 'nurbs_strip({{ArgTypeString}} label' already exists, the group is activated{{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ...{{ArgType| 3x1 Python tuple}} pn)
====pec_group====EXAMPLE: ''nurbs_strip("ns_1",(0,0,0),(1,0,0),(1,0,0))''
SYNTAXDESCRIPTION: pec_group({{ArgTypeString}} label)Creates or modifies a NURBS Strip object in the project workspace. Each point is represented with a Python tuple type. The nurbs_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list.
EXAMPLE: ''pec_group("PEC_1")''====ohmic_loss====
DESCRIPTIONSYNTAX: Creates a PEC material group in the current module. If the PEC group 'ohmic_loss({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)
====pec_voltage_group====EXAMPLE: ''ohmic_loss("FI_1",-10,-10,-10,10,10,10)''
SYNTAXDESCRIPTION: pec_voltage_group({{ArgTypeString}} Creates an ohmic loss integral observable in [[EM.Ferma]]. If the observable 'label' already exists, {{ArgTypeAny}} voltage)its properties are modified.
EXAMPLE: ''pec_voltage_group("PEC_1",10)''====parabola====
DESCRIPTIONSYNTAX: Creates a fixed-potential PEC object group in the current module. If the PEC group 'parabola({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} focal_length, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only)
====pec_via_group====EXAMPLE: ''parabola("Parabola _1",0,0,0,50,20,0)''
SYNTAXDESCRIPTION: pec_via_group({{ArgTypeString}} Draws a parabola object in the project workspace under the currently activated material group node, or modifies the parabola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, {{ArgTypeAny}} host_layer)only half of the parabola will be drawn.
EXAMPLE: ''pec_via_group("PEC_1",10)''====param_curve====
DESCRIPTIONSYNTAX: Creates an embedded PEC via set group in the current module. If the PEC via group 'param_curve({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} model, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start, {{ArgTypeAny}} stop, {{ArgTypeAny}} step, {{ArgTypeAny}} function[, {{ArgTypeAny}} y(t), {{ArgTypeAny}} z(t)])
====thinwire_group====EXAMPLE: ''param_curve("Curve_1",0,0,0,"parametric","xy",0,10,0.1,"cos(t)","sin(t)","t")''
SYNTAXDESCRIPTION: thinwire_group({{ArgTypeString}} labelGenerates a parametric curve in the project workspace under the currently activated material group node, {{ArgTypeAny}} radius)or modifies the parametric curve named 'label' if it already exists.
EXAMPLE: ''thinwire_group("Thinwire_1",4)''====param_surface====
DESCRIPTIONSYNTAX: Creates a Thinwire material group in the current module. If the thin wire group 'param_surface({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start1, {{ArgTypeAny}} stop1, {{ArgTypeAny}} step1, , {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} function)
====pmc_group====EXAMPLE: ''param_surface("Surf_1",0,0,0,"xy",0,10,0.1,0,10,0.1,"sin(x)*sin(y)")''
SYNTAXDESCRIPTION: pmc_group({{ArgTypeString}} Generates a parametric surface in the project workspace under the currently activated material group node, or modifies the parametric surface named 'label)' if it already exists.
EXAMPLE: ''pmc_group("PMC_1")''====pec_group====
DESCRIPTIONSYNTAX: Creates a PMC material group in the current module. If the PMC group 'pec_group({{ArgTypeString}} label' already exists, the group is activated.)
====slot_group====EXAMPLE: ''pec_group("PEC_1")''
SYNTAXDESCRIPTION: slot_group({{ArgTypeString}} Creates a PEC material group in the current module. If the PEC group 'label)' already exists, the group is activated.
EXAMPLE: ''slot_group("PMC_1")''====pec_via_group====
DESCRIPTIONSYNTAX: Creates a slot trace group in the current module. If the slot trace group 'pec_via_group({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeAny}} host_layer)
====dielectric_group====EXAMPLE: ''pec_via_group("PEC_1",10)''
SYNTAXDESCRIPTION: dielectric_group({{ArgTypeString}} Creates an embedded PEC via set group in the current module. If the PEC via group 'label' already exists, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho)the group is activated.
EXAMPLE: ''dielectric_group("Dielectric_1","my_eps",0,1,0)''====pec_voltage_group====
DESCRIPTIONSYNTAX: Creates a dielectric material group in the current module with the specified material properties. If the dielectric group 'pec_voltage_group({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeAny}} voltage)
====impenetrable_surface_group====EXAMPLE: ''pec_voltage_group("PEC_1",10)''
SYNTAX: impenetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: ''impenetrable_surface_group("Impenet_1",2.2,0.0001)'' DESCRIPTION: Creates an impenetrable surface a fixed-potential PEC object group in [[EM.Terrano]]the current module. If the impenetrable surface PEC group 'label' already exists, the group is activated.
====penetrable_surface_group====
DESCRIPTION: Creates a penetrable volume group in [[EM.Terrano]]. If the penetrable volume group 'label' already exists, the group is activated.
====terrain_grouppipe_sweep====
SYNTAX: terrain_grouppipe_sweep({{ArgTypeString}} labelobject, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigmaradius)
EXAMPLE: ''terrain_grouppipe_sweep("Terrain_1Curve_1",5.0,0.0001)''
DESCRIPTION: Creates an terrain surface group in [[EM.Terrano]]. If the terrain surface group 'label' already exists, the group is activateda pipe version of a given curve object.
====base_point_groupplanewave====
SYNTAX: base_point_groupplanewave({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization)
'EXAMPLE: ''base_point_setplanewave("BP_Set_1PW_1",180,0,"tm")''
DESCRIPTION: Creates a base point set in [[EM.Terrano]]plane wave source. If the base point set group plane wave source 'label' already exists, the group is activatedits properties are modified.
====virtual_groupplot_file====
SYNTAX: virtual_groupplot_file({{ArgTypeString}} labelfilename)
EXAMPLE: ''virtual_groupplot_file("VIR_1D0.DAT")''
DESCRIPTION: Creates Plots the contents of a virtual object group specified data file in [[EM.Terrano]]. If the virtual group 'label' already exists, the group is activatedGrid.
====impedance_surface_grouppmc_group====
SYNTAX: impedance_surface_grouppmc_group({{ArgTypeString}} label, {{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imag)
EXAMPLE: ''impedance_surface_grouppmc_group("IMP_1PMC_1",100,-100)''
DESCRIPTION: Creates a impedance_surface PMC material group in [[EM.Illumina]]the current module. If the impedance surface PMC group 'label' already exists, the group is activated.
====conductive_sheet_grouppoint====
SYNTAX: conductive_sheet_grouppoint({{ArgTypeString}} label, {{ArgTypeAny}} sigmax0, {{ArgTypeAny}} thicknessy0, {{ArgTypeAny}} z0)
EXAMPLE: ''conductive_sheet_grouppoint("Cond_1Point_1",1000, 0.01,10)''
DESCRIPTION: Creates Draws a conductive sheet group point in [[EM.Picasso]]. If the conductive sheet project workspace under the currently activated material group node, or modifies the point named 'label' if it already exists, the group is activated.
====charge_grouppolygon_reg====
SYNTAX: charge_grouppolygon_reg({{ArgTypeString}} label, {{ArgTypeAny}} densityx0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sides)
EXAMPLE: ''charge_grouppolygon_reg("Charge_1ts_1",-1e-50,0,0,50,100,80,1)''
DESCRIPTION: Creates Draws a volume charge source group regular polygon object in [[EM.Ferma]]. If the charge project workspace under the currently activated material group node, or modifies the regular polygon object named 'label' if it already exists, the group is activated.
====magnet_grouppolygonize====
SYNTAX: magnet_grouppolygonize({{ArgTypeString}} labelobject, {{ArgTypeAny}} mu, {{ArgTypeAny}} Mx, {{ArgTypeAny}} My, {{ArgTypeAny}} Mzside_length)
EXAMPLE: ''magnet_grouppolygonize("Magnet_1Cric_1",1,0,0,1002)''
DESCRIPTION: Creates a permanent magnet source group in [[EM.Ferma]]. If Polygonizes the magnet group 'label' already exists, specified surface or curve object by the group specified side length. The results is activateda polystrip or a polyline.
====volume_current_grouppolyline====
SYNTAX: volume_current_grouppolyline({{ArgTypeString}} label, {{ArgTypeAnyArgType| 3x1 Python tuple}} Jxp0, {{ArgTypeAnyArgType| 3x1 Python tuple}} Jyp1, ... {{ArgTypeAnyArgType| 3x1 Python tuple}} Jzpn)
EXAMPLE: ''volume_current_grouppolyline("Magnet_1pl_1",(0,0,1e60),(1,0,0),(1,0,0))''
DESCRIPTION: Creates or modifies a volume current source group PolyLine object in [[EMthe project workspace.Ferma]]Each point is represented with a Python tuple type. If the volume current group 'label' already existsThe poly_line is closed if p0 is specified again as pn, the group otherwise, it is activatedopen.
====wire_current_grouppolymesh====
SYNTAX: wire_current_grouppolymesh({{ArgTypeString}} label, {{ArgTypeAnyArgTypeString}} currentobject, {{ArgTypeAny}} wire_radiusedge_length)
EXAMPLE: ''wire_current_grouppolymesh("Magnet_1Poly_1",1"Cric_1",0.52)''
DESCRIPTION: Creates a wire current source group in [[EM.Ferma]]. If Discretizes the wire current group 'label' already exists, specified solid or surface object by the group specified edge length. The results is activateda polymesh object.
== EM.Cube's Python Functions for Source & Lumped Device Definition ==polystrip====
====lumped_src====SYNTAX: polystrip({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn)
SYNTAXEXAMPLE: lumped_src''polystrip({{ArgTypeString}} label"ps_1", {{ArgTypeAny}} line_object(0, {{ArgTypeAny}} offset0, {{ArgTypeAny}} polarity[0), {{ArgTypeAny}} amplitude(1, {{ArgTypeAny}} phase0, {{ArgTypeAny}} resistance]0),(1,0,0))''
EXAMPLEDESCRIPTION: Creates or modifies a Polystrip object in the project workspace. Each point is represented with a Python tuple type. The poly_strip function is 'self-closing'lumped_src("LS_1","Line_1",50,0)''-- there is no need to supply the first point again at the end of the point list.
DESCRIPTION: Creates a lumped source in [[EM.Tempo]]. If the lumped source 'label' already exists, its properties are modified.====port_definition_custom====
====distributed_src====SYNTAX: port_definition_custom({{ArgTypeString}} label, ({{ArgTypeString}} port_1_src_1, {{ArgTypeString}} port_1_src_2, ..., {{ArgTypeString}} port_1_impedance), ({{ArgTypeString}} port_2_src_1, {{ArgTypeString}} port_2_src_2, ..., {{ArgTypeString}} port_2_impedance), ...)
SYNTAXEXAMPLE: distributed_src''port_definition_custom({{ArgTypeString}} label"PD_1", {{ArgTypeAny}} rect_object("LS_1", {{ArgTypeAny}} field_dir"LS_2", {{ArgTypeAny}} profile[50), {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase("LS_3", {{ArgTypeAny}} resistance]"LS_4",50))''
EXAMPLEDESCRIPTION: Creates a custom port definition observable. If the observable 'label'distributed_src("DS_1"already exists,"Rect_1","+y","uniform")''its properties are modified.
DESCRIPTION: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already exists, its properties are modified.====port_definition_default====
====microstrip_src====SYNTAX: port_definition_default({{ArgTypeString}} label)
SYNTAXEXAMPLE: microstrip_src''port_definition_default({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} height, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]"PD_1")''
EXAMPLEDESCRIPTION: Creates a default port definition observable. If the observable 'label'microstrip_src("MS_1"already exists,"Rect_1",1its properties are modified.5,"+x")''
DESCRIPTION: Creates a microstrip port source in [[EM.Tempo]]. If the microstrip port 'label' already exists, its properties are modified.====probe_gap_src====
====cpw_src====SYNTAX: probe_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} via_object, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
SYNTAXEXAMPLE: cpw_src''probe_gap_src({{ArgTypeString}} label"Probe_1", {{ArgTypeAny}} rect_object"Via_1", {{ArgTypeAny}} spacing, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]0)''
EXAMPLEDESCRIPTION: Creates a probe gap circuit source in [[EM.Picasso]]. If the probe gap source 'label'cpw_src("CPW_1"already exists,"Rect_1",1its properties are modified.5,"+x")''
DESCRIPTION: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already exists, its properties are modified.====pyramid====
====coaxial_src====SYNTAX: pyramid({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height)
SYNTAXEXAMPLE: coaxial_src''pyramid({{ArgTypeString}} label"Pyramid_1", {{ArgTypeAny}} cylinder_object0, {{ArgTypeAny}} outer_radius0, {{ArgTypeAny}} edge[0, {{ArgTypeAny}} amplitude10, {{ArgTypeAny}} phase10, {{ArgTypeAny}} resistance]100)''
EXAMPLEDESCRIPTION: Draws a pyramid object in the project workspace under the currently activated material group node, or modifies the pyramid named 'label'coaxial_src("COAX_1","Cyl_1",1if it already exists.5,"+z")''
DESCRIPTION: Creates a coaxial port source in [[EM.Tempo]]. If the coaxial port 'label' already exists, its properties are modified.====radial_strip====
====waveguide_src====SYNTAX: radial_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} base_length, {{ArgTypeAny}} angle)
SYNTAXEXAMPLE: waveguide_src''radial_strip({{ArgTypeString}} label"Radial_1", {{ArgTypeAny}} box_object0, {{ArgTypeAny}} offset0, {{ArgTypeAny}} is_negative[0, {{ArgTypeAny}} amplitude50, {{ArgTypeAny}} phase0, {{ArgTypeAny}} resistance]90)''
EXAMPLEDESCRIPTION: ''waveguide_src("WG_1","Box_1",50Draws a radial strip object in the project workspace under the currently activated material group node,0)or modifies the radial strip object named 'label'if it already exists.
DESCRIPTION: Creates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label' already exists, its properties are modified.====rail_sweep====
====wire_gap_src====SYNTAX: rail_sweep({{ArgTypeString}} rail_object, {{ArgTypeString}} sweep_object)
SYNTAXEXAMPLE: wire_gap_src''rail_sweep({{ArgTypeString}} label"Curve_1", {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]"Curve_2")''
EXAMPLEDESCRIPTION: ''wire_gap_src("WIG_1","Line_1",50,0)''Rail-sweeps the specified sweep object along the specified curve object.
DESCRIPTION: Creates a wire gap circuit source in [[EM.Libera]]. If the wire gap source 'label' already exists, its properties are modified.====ramp====
====rect_gap_src====SYNTAX: ramp({{ArgTypeReal}} x)
SYNTAXEXAMPLE: rect_gap_src''ramp({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]0.5)''
EXAMPLEDESCRIPTION: ''rect_gap_src("GAP_1","Rect_1",Computes and returns the ramp function: x if x>0,0)''if x<0.
DESCRIPTION: Creates a strip gap circuit source in [[EM.Picasso]] or [[EM.Libera]]. If the strip gap source 'label' already exists, its properties are modified.====rand====
====probe_gap_src====SYNTAX: rand({{ArgTypeReal}} x, {{ArgTypeReal}} y)
SYNTAXEXAMPLE: probe_gap_src''rand({{ArgTypeString}} label0, {{ArgTypeAny}} via_object, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]1)''
EXAMPLEDESCRIPTION: ''probe_gap_src("Probe_1","Via_1",0)''Computes and returns a random number between x and y using an uniform distribution.
DESCRIPTION: Creates a probe gap circuit source in [[EM.Picasso]]. If the probe gap source 'label' already exists, its properties are modified.====random_group====
====wave_port====SYNTAX: random_group({{ArgTypeString}} label, {{ArgTypeString}} key_object, {{ArgTypeString}} container_object, {{ArgTypeAny}} element_count)
SYNTAXEXAMPLE: wave_port''random_group({{ArgTypeString}} label"Rand_1", {{ArgTypeAny}} rect_object"Rect_1", {{ArgTypeAny}} offset"Box_1", {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]100)''
EXAMPLEDESCRIPTION: ''wave_port("WP_1","Rect_1",0,0)''Creates a random group using the specified key object and confines them in the specified container object.
DESCRIPTION: Creates a scattering wave port source in [[EM.Picasso]] or [[EM.Libera]]. If the wave port 'label' already exists, its properties are modified.====rcs_bistatic====
====short_dipole====SYNTAX: rcs_bistatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency])
SYNTAXEXAMPLE: short_dipole''rcs_bistatic({{ArgTypeString}} label"RCS_1", {{ArgTypeAny}} x01, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase1)''
EXAMPLEDESCRIPTION: Creates a bistatic RCS observable. The frequency can also be optionally specified for [[EM.Tempo]]. If the observable 'label'short_dipole("SD_1"already exists,0,0,50,3,0,0,1,1,0)''its properties are modified.
DESCRIPTION: Creates a Hertzian short dipole source. If the short dipole source 'label' already exists, its properties are modified.====rcs_monostatic====
====planewave====SYNTAX: rcs_monostatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency])
SYNTAXEXAMPLE: planewave''rcs_monostatic({{ArgTypeString}} label"RCS_1", {{ArgTypeAny}} theta1, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization1)''
'EXAMPLEDESCRIPTION: Creates a monostatic RCS observable. The frequency can also be optionally specified for [[EM.Tempo]]. If the observable 'label'planewave("PW_1"already exists,180,0,"tm")''its properties are modified.
DESCRIPTION: Creates a plane wave source. If the plane wave source 'label' already exists, its properties are modified.====receiver_set====
====gauss_beam====SYNTAX: receiver_set({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)
SYNTAXEXAMPLE: gauss_beam''receiver_set({{ArgTypeString}} label"TX_1", {{ArgTypeAny}} theta"PT_1", {{ArgTypeAny}} phi"DPL_STD.RAD", {{ArgTypeAny}} polarization0, {{ArgTypeAny}} focus_x90, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius, {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_mode0)''
EXAMPLEDESCRIPTION: Creates a receiver set in [[EM.Terrano]]. If the receiver set 'label'gauss_beam("PW_1"already exists,180,0,"tm",0,0,0,20,0,0)''its properties are modified.
DESCRIPTION: Creates a Gaussian beam source in [[EM.Tempo]]. If the Gaussian beam source 'label' already exists, its properties are modified.====rect====
====huygens_src====SYNTAX: rect({{ArgTypeReal}} x)
SYNTAXEXAMPLE: huygens_src''rect({{ArgTypeString}} label, {{ArgTypeAny}} filename[, {{ArgTypeAny}} set_lcs, {{ArgTypeAny}} polarization, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} x_rot, {{ArgTypeAny}} y_rot, {{ArgTypeAny}} z_rot]0.1)''
EXAMPLEDESCRIPTION: Computes and returns the rectangular window function: ''huygens_src("HS_1","Huygens_1.HUY",1,100,100,if x<0.5,0,0,0)''elsewhere.
DESCRIPTION: Creates a Huygens source. If the Huygens source 'label' already exists, its properties are modified.====rect_gap_src====
====transmitter_set====SYNTAX: rect_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
SYNTAXEXAMPLE: transmitter_set''rect_gap_src({{ArgTypeString}} label"GAP_1", {{ArgTypeAny}} base_point_set["Rect_1", {{ArgTypeAny}} pattern_file0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z0)''
EXAMPLEDESCRIPTION: Creates a strip gap circuit source in [[EM.Picasso]] or [[EM.Libera]]. If the strip gap source 'label'transmitter_set("TX_1"already exists,"PT_1","DPL_STDits properties are modified.RAD",0,90,0)''
====rect_strip==== SYNTAX: rect_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side_x, {{ArgTypeAny}} side_y) EXAMPLE: ''rect_strip("my_rectangle",0,0,0,50,20)'' DESCRIPTION: Draws a rectangle Strip object in the project workspace under the currently activated material group node, or modifies the rectangle strip object named 'label' if it already exists. ====rename==== SYNTAX: rename({{ArgTypeString}} new_label, {{ArgTypeString}} old_label) EXAMPLE: ''rename("Box_2","Box_1")'' DESCRIPTION: Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group.  ====resistance==== SYNTAX: resistance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''resistance("FI_1",0,0,-10,0,0,10,-10,-10,0,10,10,0)'' DESCRIPTION: Creates a transmitter set resistance integral observable in [[EM.TerranoFerma]]. If the transmitter set observable 'label' already exists, its properties are modified.
====resistor====
DESCRIPTION: Creates a resistor in [[EM.Tempo]]. If the resistor 'label' already exists, its properties are modified.
====capacitorrevolve====
SYNTAX: capacitorrevolve({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} line_objectuY, {{ArgTypeAny}} offsetuZ, {{ArgTypeAny}} capacitance_pFrot_angle)
EXAMPLE: ''capacitorrevolve("Cap_1Rev1","Line_1",250,100,0,0,0,1,360)''
DESCRIPTION: Creates or modifies a capacitor in [[EM.Tempo]]revolution object from a specified object. If modifying an existing revolution object, the capacitor 'label' already existspre-existing primitive object is used. (x0, its properties are modifiedy0,z0) specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degrees.
====inductorrosen====
SYNTAX: inductorrosen({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} line_objecty, {{ArgTypeAnyArgTypeReal}} offseta, {{ArgTypeAnyArgTypeReal}} inductance_nHb)
EXAMPLE: ''inductorrosen("Cap_1"0.5,"Line_1"0,251,102)''
DESCRIPTION: Creates a inductor in [[EM.Tempo]]. If Computes and returns the inductor 'label' already exists, its properties are modifiedRosenbrock function: (a-x)**2 + b*(y-x**2)**2.
====dioderotate====
SYNTAX: dioderotate({{ArgTypeString}} labelobject, {{ArgTypeAny}} line_objectrot_angle_degree, {{ArgTypeAny}} polarityrot_axis_x, {{ArgTypeAny}} is_fArot_axis_y, {{ArgTypeAny}} temperature_K, {{ArgTypeAny}} ideality_factorrot_axis_z)
EXAMPLE: ''dioderotate("Diode_1pyramid_1","Line_1"45,251,1,0,10,300,1)''
DESCRIPTION: Creates Rotates an object about a diode in [[EM.Tempo]]. If the diode 'label' already exists, line passing through its properties are modifiedLCS center and aligned along the specified direction vector (rot_axis) by the specified angle.
== EM.Cube's Python Functions for Observable Definition ==roughen====
====port_definition_default====SYNTAX: roughen({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} rms_height, {{ArgTypeAny}} correl_length)
SYNTAXEXAMPLE: port_definition_default''roughen({{ArgTypeString}} label"Rect_1",1,5)''
EXAMPLEDESCRIPTION: ''port_definition_default("PD_1")''Roughens the surface of the specified object based on the specified RMS height and correlation length.
DESCRIPTION: Creates a default port definition observable. If the observable 'label' already exists, its properties are modified.====run_analysis====
====port_definition_custom====SYNTAX: run_analysis()
SYNTAXDESCRIPTION: port_definition_custom({{ArgTypeString}} label, ({{ArgTypeString}} port_1_src_1, {{ArgTypeString}} port_1_src_2, Runs a simulation in the current active [[EM.Cube]] computational module.., {{ArgTypeString}} port_1_impedance), ({{ArgTypeString}} port_2_src_1, {{ArgTypeString}} port_2_src_2, ..., {{ArgTypeString}} port_2_impedance), ...)
EXAMPLE: ''port_definition_custom("PD_1",("LS_1","LS_2",50),,("LS_3","LS_4",50))''====save_data====
DESCRIPTIONSYNTAX: Creates a custom port definition observable. If the observable 'label' already exists, its properties are modified.save_data({{ArgTypeString}} directory_name)
====farfield====EXAMPLE: ''save_data("Simulation_Data")''
SYNTAXDESCRIPTION: farfield({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr)Saves [[EM.Cube]]'s output simulation data files under the specified directory.
EXAMPLE: ''farfield("FF_1",1,1)''====sawtooth====
DESCRIPTIONSYNTAX: Creates a far-field radiation pattern observable. If the observable 'label' already exists, its properties are modified.sawtooth({{ArgTypeReal}} x)
====rcs_bistatic====EXAMPLE: ''sawtooth(0.5)''
SYNTAXDESCRIPTION: rcs_bistatic({{ArgTypeString}} labelComputes and returns the ascending periodic sawtooth function of period T = 2, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr)oscillating between two values +1 and -1 and having a zero value of at x = 0.
EXAMPLE: ''rcs_bistatic("RCS_1",1,1)''====scale====
DESCRIPTIONSYNTAX: Creates a bistatic RCS observable. If the observable 'label' already existsscale({{ArgTypeString}} object, its properties are modified.{{ArgTypeAny}} scale_factor)
====current_dist====EXAMPLE: ''scale("pyramid_1",2)''
SYNTAXDESCRIPTION: current_dist({{ArgTypeString}} label)Scales an object by the specified scale factor.
EXAMPLE: ''current_dist("CD_1")''====select_module====
DESCRIPTIONSYNTAX: Creates a current distribution observable. If the observable 'label' already exists, its properties are modified.select_module({{ArgTypeString}} module_name)
====field_sensor====EXAMPLE: ''select_module("[[EM.Tempo]]")''
SYNTAXDESCRIPTION: field_sensor({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} xSize, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples)Selects and sets [[EM.Cube]]'s active module.
EXAMPLE: ''field_sensor("FS_1","z",0,0,0,100,100,0,25,25,0)''====set_bandwidth====
DESCRIPTIONSYNTAX: Creates a near-field sensor observable. If the observable 'label' already exists, its properties are modified.set_bandwidth({{ArgTypeAny}} value)
====field_sensor_grid====EXAMPLE: ''set_bandwidth(1e9)''
SYNTAXDESCRIPTION: field_sensor_grid({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0)Sets [[EM.Cube]]'s frequency bandwidth.
EXAMPLE: ''field_sensor_grid("FS_1","z",0,0,0)''====set_boundary_conditions====
DESCRIPTIONSYNTAX: Creates a near-field sensor observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already existsset_boundary_conditions({{ArgTypeString}} xn_type, its properties are modified.{{ArgTypeString}} xp_type, {{ArgTypeString}} yn_type, {{ArgTypeString}} yp_type, {{ArgTypeString}} zn_type, {{ArgTypeString}} zp_type)
====field_probe====EXAMPLE: ''set_domain_offset_lambda("pml","pml","pml","pml","pec","pml")''
SYNTAXDESCRIPTION: field_probe({{ArgTypeString}} labelSets [[EM.Tempo]]'s domain boundary conditions domain offset on the &plusmn;X, {{ArgTypeAny}} x0&plusmn;Y and &plusmn;Z boundary walls. The options are "pec", {{ArgTypeAny}} y0, {{ArgTypeAny}} z0)"pmc" and "pml".
EXAMPLE: ''field_probe("FS_1",0,0,50)''====set_domain_offset====
DESCRIPTIONSYNTAX: Creates a temporal field probe observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already existsset_domain_offset({{ArgTypeAny}} dxn_offset, its properties are modified.{{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAny}} dzn_offset, {{ArgTypeAny}} dzp_offset)
====receiver_set====EXAMPLE: ''set_domain_offset(20,20,20,20,0,10)''
SYNTAXDESCRIPTION: receiver_set({{ArgTypeString}} labelSets the domain offset values along the &plusmn;X, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)&plusmn;Y and &plusmn;Z directions in project units.
EXAMPLE: ''receiver_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)''====set_domain_offset_lambda====
DESCRIPTIONSYNTAX: Creates a receiver set in [[EM.Terrano]]. If the receiver set 'label' already existsset_domain_offset_lambda({{ArgTypeAny}} dxn_offset, its properties are modified.{{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAny}} dzn_offset, {{ArgTypeAny}} dzp_offset)
====huygens_surface====EXAMPLE: ''set_domain_offset_lambda(0.1,0.1,0.1,0.1,0,0.25)''
SYNTAXDESCRIPTION: huygens_surface({{ArgTypeString}} labelSets the domain offset values along the &plusmn;X, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples)&plusmn;Y and &plusmn;Z directions in free-space wavelengths.
EXAMPLE: ''huygens_surface("HS_1",-10,-10,-10,10,10,10,40,40,40)''====set_frequency====
DESCRIPTIONSYNTAX: Creates a Huygens surface observable. If the observable 'label' already exists, its properties are modified.set_frequency({{ArgTypeAny}} value)
====huygens_surface_grid====EXAMPLE: ''set_frequency(2.4e9)''
SYNTAXDESCRIPTION: huygens_surface_grid({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)Sets [[EM.Cube]]'s center frequency.
EXAMPLE: ''huygens_surface_grid("HS_1",-10,-10,-10,10,10,10)''====set_lcs_link====
DESCRIPTIONSYNTAX: Creates a Huygens surface observable in [[EM.Tempo]]. If the observable 'label' already existsset_lcs_link({{ArgTypeString}} object, its properties are modified.{{ArgTypeString}} lcs_obj, {{ArgTypeAny}} x_off, {{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off)
====voltage_integral====EXAMPLE: ''set_lcs_link("pyramid_1","box_1",50,50,0)''
SYNTAXDESCRIPTION: voltage_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)Links the LCS of the first object to the LCS of the second object by the specified offset values along the three axes.
EXAMPLE: ''voltage_integral("FI_1",0,0,-10,0,0,10)''====set_periodic====
DESCRIPTIONSYNTAX: Creates a voltage integral observable in [[EM.Ferma]]. If the observable 'label' already existsset_periodic({{ArgTypeAny}} is_periodic, its properties are modified.{{ArgTypeAny}} spacingX, {{ArgTypeAny}} spacingY)
====current_integral====EXAMPLE: ''set_periodic(1,50,50)''
SYNTAXDESCRIPTION: current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)Designates the physical structure as periodic and sets the periods along the X and Y directions.
EXAMPLE: ''current_integral("FI_1",-10,-10,0,10,10,0)''====set_rot====
DESCRIPTIONSYNTAX: Creates a current integral observable in [[EM.Ferma]]. If the observable 'label' already existsset_rot({{ArgTypeString}} object, its properties are modified.{{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)
====conduction_current_integral====EXAMPLE: ''set_rot("pyramid_1",0,0,45)''
SYNTAXDESCRIPTION: conduction_current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)Sets the three rotation angles of an object.
EXAMPLE: ''conduction_current_integral("FI_1",-10,-10,0,10,10,0)''====set_rot_link====
DESCRIPTIONSYNTAX: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already existsset_rot_link({{ArgTypeString}} object, its properties are modified.{{ArgTypeString}} lcs_obj, {{ArgTypeAny}} x_off_deg, {{ArgTypeAny}} y_off_deg, {{ArgTypeAny}} z_off_deg)
====capacitance====EXAMPLE: ''set_rot_link("pyramid_1","box_1",0,0,45)''
SYNTAXDESCRIPTION: capacitance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)Links the rotation angles of the LCS of the first object to the rotation angles of the LCS of the second object by the specified angle offset values in degrees along the three axes.
EXAMPLE: ''capacitance("FI_1",-10,-10,5,10,10,10,0,0,-10,0,0,10)''====set_stackup_order====
DESCRIPTIONSYNTAX: Creates a capacitance integral observable in [[EMset_stackup_order("THS", {{ArgTypeString}} label_1, {{ArgTypeString}} label_2, .Ferma]]. If the observable 'label' already exists, its properties are modified., {{ArgTypeString}} label_n, "BHS")
====inductance====EXAMPLE: ''background_layer("THS","Top_Layer","Mid_Layer","Bottom_Layer","BHS")''
SYNTAXDESCRIPTION: inductance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)Sets the hierarchy of [[EM.Picasso]]'s background layer stackup from top to bottom. The sequence should always start with "THS" standing for the top half-space and must end in "BHS" standing for the bottom half-space. All the intermediate finite-thickness substrate layers must be included and listed in the right order.
EXAMPLE: ''inductance("FI_1",0,0,-10,10,0,10,2.5,-2.5,0,7.5,2.5,0)''====set_units====
DESCRIPTIONSYNTAX: Creates a inductance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.set_units({{ArgTypeString}} units)
====resistance====EXAMPLE: ''set_units("meter")''
SYNTAXDESCRIPTION: resistance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)Sets [[EM.Cube]]'s project length units.
EXAMPLE: ''resistance("FI_1",0,0,-10,0,0,10,-10,-10,0,10,10,0)''====sgn====
DESCRIPTIONSYNTAX: Creates a resistance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.sgn({{ArgTypeReal}} x)
====flux_electric====EXAMPLE: ''sgn(-1.0)''
SYNTAXDESCRIPTION: flux_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2Computes and returns the signum function: 1 if x>0, {{ArgTypeAny}} z2)-1 if x<0.
EXAMPLE: ''flux_electric("FI_1",-10,-10,5,10,10,10)''====short_dipole====
DESCRIPTIONSYNTAX: Creates an electric flux integral observable in [[EM.Ferma]]. If the observable 'short_dipole({{ArgTypeString}} label' already exists, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase)
====flux_magnetic====EXAMPLE: ''short_dipole("SD_1",0,0,50,3,0,0,1,1,0)''
SYNTAXDESCRIPTION: flux_magnetic({{ArgTypeString}} Creates a Hertzian short dipole source. If the short dipole source 'label' already exists, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)its properties are modified.
EXAMPLE: ''flux_magnetic("FI_1",0,0,-10,10,0,10)''====sigmoid====
DESCRIPTIONSYNTAX: Creates a magnetic flux integral observable in [[EM.Ferma]]. If the observable 'label' already existssigmoidnc({{ArgTypeReal}} x, its properties are modified.{{ArgTypeReal}} a)
====energy_electric====EXAMPLE: ''sigmoid(0.5,1)''
SYNTAXDESCRIPTION: energy_electricComputes and returns the sigmoid function of slope a: 2/({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z21 + exp(-a*x))- 1.
EXAMPLE: ''energy_electric("FI_1",-10,-10,-10,10,10,10)''====sinc====
DESCRIPTIONSYNTAX: Creates an electric energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.sinc({{ArgTypeReal}} x)
====energy_magnetic====EXAMPLE: ''sinc(0.5)''
SYNTAXDESCRIPTION: energy_magneticComputes and returns the sinc function: sin(pi*x)/({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2pi*x).
EXAMPLE: ''energy_magnetic("FI_1",-10,-10,-10,10,10,10)''====slice====
DESCRIPTIONSYNTAX: Creates a magnetic energy integral observable in [[EM.Ferma]]. If the observable 'label' already existsslice({{ArgTypeString}} object, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)
====ohmic_loss====EXAMPLE: ''slice("Rect_1",5)''
SYNTAXDESCRIPTION: ohmic_loss({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)Slices the specified object into two parts using the specified plane given by the point coordinates and normal vector coordinates.
EXAMPLE: ''ohmic_loss("FI_1",-10,-10,-10,10,10,10)''====slot_group====
SYNTAX: slot_group({{ArgTypeString}} label) EXAMPLE: ''slot_group("PMC_1")'' DESCRIPTION: Creates an ohmic loss integral observable a slot trace group in [[EM.Ferma]]the current module. If the observable slot trace group 'label' already exists, its properties are modifiedthe group is activated.
====solution_plane====
DESCRIPTION: Creates a 2D solution plane observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.
== EM.Cube's Python Functions for Simulation-Related Functions & Operations ==sphere====
====select_module====SYNTAX: sphere({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])
SYNTAXEXAMPLE: select_module''sphere({{ArgTypeString}} module_name"Sphere_1",0,0,0,10,0,180)''
EXAMPLEDESCRIPTION: Draws a sphere object in the project workspace under the currently activated Material Group node, or modifies the sphere named 'label'select_module("[[EMif it already exists.Tempo]]")'The arguments start_angle and end_angle are in degrees and specify a sweep about the sphere's azimuth axis.
DESCRIPTION: Selects and sets [[EM.Cube]]'s active module.====spiral_curve====
====set_units====SYNTAX: spiral_curve({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)
SYNTAXEXAMPLE: set_units''spiral_curve({{ArgTypeString}} units"Spiral _1",0,0,0,10,50,5,0,0)''
EXAMPLEDESCRIPTION: Draws a spiral curve object in the project workspace under the currently activated material group node, or modifies the spiral curve named 'label'set_units(if it already exists. If the Boolean parameter "meterspiral_dir")''is 1, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawn.
DESCRIPTION: Sets [[EM.Cube]]'s project length units.====spiral_strip====
====set_frequency====SYNTAX: spiral_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} width, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)
SYNTAXEXAMPLE: set_frequency''spiral_strip({{ArgTypeAny}} value"Spiral _1",0,0,0,10,50,5,0,0)''
EXAMPLEDESCRIPTION: Draws a spiral strip object in the project workspace under the currently activated material group node, or modifies the spiral strip named 'label'set_frequency(2if it already exists. If the Boolean parameter "spiral_dir" is 1, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawn.4e9)''
DESCRIPTION: Sets [[EM.Cube]]'s center frequency.====spline_fit====
====set_bandwidth====SYNTAX: spline_fit({{ArgTypeString}} object)
SYNTAXEXAMPLE: set_bandwidth''spline_fit({{ArgTypeAny}} value"Poly_1")''
EXAMPLEDESCRIPTION: ''set_bandwidth(1e9)''Applies spline fit transformation on a specified polymesh, polyline or polystrip object.
DESCRIPTION: Sets [[EM.Cube]]'s frequency bandwidth.====spline2====
====background_layer====SYNTAX: spline2({{ArgTypeReal}} x)
SYNTAXEXAMPLE: background_layer''spline2({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} thickness1.0)''
EXAMPLEDESCRIPTION: ''background_layer("Mid_Layer",3Computes and returns the quadratic B-spline function.3,0.001,1,1.5)''
DESCRIPTION: Adds a new substrate layer to [[EM.Picasso]]'s background layer stackup.====spline3====
====delete_background_layer====SYNTAX: spline3({{ArgTypeReal}} x)
SYNTAXEXAMPLE: delete_background_layer''spline3({{ArgTypeString}} label1.0)''
EXAMPLEDESCRIPTION: ''delete_background_layer("Mid_Layer")''Computes and returns the cubic B-spline function.
DESCRIPTION: Deletes a finite-thickness substrate layer from [[EM.Picasso]]'s background layer stackup.====sqr_wave====
====set_stackup_order====SYNTAX: sqr_wave({{ArgTypeReal}} x)
SYNTAXEXAMPLE: set_stackup_order''sqr_wave("THS", {{ArgTypeString}} label_1, {{ArgTypeString}} label_2, 0..., {{ArgTypeString}} label_n, "BHS"5)''
EXAMPLEDESCRIPTION: ''background_layer("THS"Computes and returns the periodic square wave function of period T = 2,"Top_Layer","Mid_Layer","Bottom_Layer","BHS")''oscillating between two values +1 and -1 and having a value of +1 at x = 0.
DESCRIPTION: Sets the hierarchy of [[EM.Picasso]]'s background layer stackup from top to bottom. The sequence should always start with "THS" standing for the top half-space and must end in "BHS" standing for the bottom half-space. All the intermediate finite-thickness substrate layers must be included and listed in the right order. ====sqr2====
====global_ground====SYNTAX: sqr2({{ArgTypeReal}} x, {{ArgTypeReal}} y)
SYNTAXEXAMPLE: global_ground''sqr2({{ArgTypeAny}} ground_on0, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma1)''
EXAMPLEDESCRIPTION: ''global_ground(1,3.3,0Computes and returns the sum of squares of x and y: x**2 + y**2.001)''
DESCRIPTION: Set the state of [[EM.Terrano]]'s global ground and its material properties. A zero value for ground_on means to no global ground assumed at Z = 0. ===sqr3====
====delete====SYNTAX: sqr2({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} z)
SYNTAXEXAMPLE: delete''sqr2({{ArgTypeString}} node_name0,1,2)''
EXAMPLEDESCRIPTION: ''delete("Box_1")''Computes and returns the sum of squares of x, y and z: x**2 + y**2 + z**2.
DESCRIPTION: Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group. ====sqrt2====
====rename====SYNTAX: sqrt2({{ArgTypeReal}} x, {{ArgTypeReal}} y)
SYNTAXEXAMPLE: rename''sqrt2({{ArgTypeString}} new_label0, {{ArgTypeString}} old_label1)''
EXAMPLEDESCRIPTION: ''renameComputes and returns the radius of the 2D point ("Box_2"x,"Box_1"y)'': sqrt(x**2 + y**2).
DESCRIPTION: Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group. ====sqrt3====
====zoom_extents====SYNTAX: sqrt3({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} z)
SYNTAXEXAMPLE: zoom_extents''sqrt3(0,1,2)''
DESCRIPTION: Zooms to fit Computes and returns the extents radius of the physical structure into the screen3D point (x,y,z): sqrt(x**2 + y**2 + z**2).
====get_domain_extentstep====
SYNTAX: get_domain_extentstep({{ArgTypeStringArgTypeReal}} coordinatex)
EXAMPLE: ''get_domain_extentstep("x"1.0)''
DESCRIPTION: Returns Computes and returns the size of the computational domain along the specified directionunit step function: 1 if x>0, 0 if x<0.
====set_domain_offsetstrip_sweep====
SYNTAX: set_domain_offsetstrip_sweep({{ArgTypeAny}} dxn_offset, {{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAnyArgTypeString}} dzn_offsetobject, {{ArgTypeAny}} dzp_offsetwidth)
EXAMPLE: ''set_domain_offsetstrip_sweep(20"Curve_1",20,20,20,0,105)''
DESCRIPTION: Sets the domain offset values along the &plusmn;X, &plusmn;Y and &plusmn;Z directions in project unitsCreates a strip version of a given curve object.
====set_domain_offset_lambdasubtract====
SYNTAX: set_domain_offset_lambdasubtract({{ArgTypeAnyArgTypeString}} dxn_offsetlabel, {{ArgTypeAnyArgTypeString}} dxp_offsetobject_1, {{ArgTypeAnyArgTypeString}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAny}} dzn_offset, {{ArgTypeAny}} dzp_offsetobject_2)
EXAMPLE: ''set_domain_offset_lambdasubtract(0.1"Subtract_Object",0.1"Rect_Strip1",0.1,0.1,0,0.25"Rect_Strip2")''
DESCRIPTION: Sets the domain offset values along the &plusmn;X, &plusmn;Y and &plusmn;Z directions in free-space wavelengthsCreates a Boolean object named 'label' by subtracting object_2 from object_1. An error will be thrown if a Boolean object named 'label' already exists.
====set_boundary_conditionssuperquad====
SYNTAX: set_boundary_conditionssuperquad({{ArgTypeString}} xn_typelabel, {{ArgTypeStringArgTypeAny}} xp_typex0, {{ArgTypeStringArgTypeAny}} yn_typey0, {{ArgTypeStringArgTypeAny}} yp_typez0, {{ArgTypeStringArgTypeAny}} zn_typediam_x, {{ArgTypeStringArgTypeAny}} diam_y, {{ArgTypeAny}} zp_typeorder)
EXAMPLE: ''set_domain_offset_lambdasuperquad("pmlSuperQuad_1","pml"0,"pml"0,"pml"0,"pec"50,"pml"20,4)''
DESCRIPTION: Sets [[EM.Tempo]]'s domain boundary conditions domain offset on Draws a super-quadratic curve object in the &plusmn;Xproject workspace under the currently activated material group node, &plusmn;Y and &plusmn;Z boundary wallsor modifies the super-quadratic curve named 'label' if it already exists. The options are "pec"If order = 2, "pmc" and "pml"the curve reduces to an ellipse. Higher order makes the round edges sharper. An infinite order reduces the curve to a rectangle.
====add_variabletaper_strip====
SYNTAX: add_variabletaper_strip({{ArgTypeString}} var_namelabel, {{ArgTypeAny}} valuex0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_width, {{ArgTypeAny}} top_width, {{ArgTypeAny}} length, {{ArgTypeAny}} is_expo)
EXAMPLE: ''add_variabletaper_strip("MyVarts_1",0,0,0,50,100,80,1)''
DESCRIPTION: Adds Draws a new variable to [[EM.Cube]]taper strip object in the project workspace under the currently activated material group node, or modifies the taper strip object named 's variable listlabel' if it already exists. If the Boolean parameters "is_expo" is 1, an exponential taper will be drawn.
====run_analysisterrain_group====
SYNTAX: run_analysisterrain_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)
DESCRIPTIONEXAMPLE: Runs a simulation in the current active [[EM''terrain_group("Terrain_1",5.Cube]] computational module0,0.0001)''
====set_periodic====DESCRIPTION: Creates an terrain surface group in [[EM.Terrano]]. If the terrain surface group 'label' already exists, the group is activated.
SYNTAX: set_periodic({{ArgTypeAny}} is_periodic, {{ArgTypeAny}} spacingX, {{ArgTypeAny}} spacingY) ====thinwire_group====
EXAMPLESYNTAX: ''set_periodicthinwire_group(1{{ArgTypeString}} label,50,50{{ArgTypeAny}} radius)''
DESCRIPTIONEXAMPLE: Designates the physical structure as periodic and sets the periods along the X and Y directions.''thinwire_group("Thinwire_1",4)''
====get_standard_output====DESCRIPTION: Creates a Thinwire material group in the current module. If the thin wire group 'label' already exists, the group is activated.
SYNTAX: get_standard_output({{ArgTypeString}} output_name) ====torus====
EXAMPLESYNTAX: ''get_standard_outputtorus("S11M"{{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])''
DESCRIPTIONEXAMPLE: Returns the computed value of the specified standard output parameter at the end of a simulation.''torus("Torus_1",0,0,0,50,20)''
====save_data====DESCRIPTION: Draws an torus object in the project workspace under the currently activated material group node, or modifies the torus named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the torus's azimuth axis.
SYNTAX: save_data({{ArgTypeString}} directory_name) ====translate_by====
EXAMPLESYNTAX: ''save_datatranslate_by("Simulation_Data"{{ArgTypeString}} object, {{ArgTypeReal}} x_dist, {{ArgTypeReal}} y_dist, {{ArgTypeReal}} z_dist)''
DESCRIPTIONEXAMPLE: Saves [[EM.Cube]]'s output simulation data files under the specified directory.'translate_by("MyObj",10,10,x)''
====plot_file====DESCRIPTION: Translates an object by the specified distances in each direction.
SYNTAX: plot_file({{ArgTypeString}} filename) ====translate_to====
EXAMPLESYNTAX: ''plot_filetranslate_to("D0.DAT"{{ArgTypeString}} object, {{ArgTypeReal}} x_dest, {{ArgTypeReal}} y_dest, {{ArgTypeReal}} z_dest)''
DESCRIPTIONEXAMPLE: Plots the contents of a specified data file in EM.Grid.''translate_to("MyObj",20,20,x2)''
====mesh====DESCRIPTION: Translates an object to the specified destination.
SYNTAX: mesh()====transmitter_set====
DESCRIPTIONSYNTAX: Generates and displays the mesh of the physical structure.transmitter_set({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)
====emtempo_mesh_settings====EXAMPLE: ''transmitter_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)''
SYNTAXDESCRIPTION: emtempo_mesh_settings({{ArgTypeAny}} cells_per_lambdaCreates a transmitter set in [[EM.Terrano]]. If the transmitter set 'label' already exists, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs)its properties are modified.
EXAMPLE: ''emtempo_mesh_settings(30,0.1,0.1,0.02)''====tri====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Tempo]]'s adaptive mesh generator.tri({{ArgTypeReal}} x)
====emillumina_mesh_settings====EXAMPLE: ''tri(0.1)''
SYNTAXDESCRIPTION: emillumina_mesh_settings({{ArgTypeAny}} cells_per_lambda)Computes and returns the triangular window function: 1-|x| if x<1, 0 elsewhere.
EXAMPLE: ''emillumina_mesh_settings(30)''====tri_wave====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Illumina]]'s mesh generator.tri_wave({{ArgTypeReal}} x)
====empicasso_mesh_settings====EXAMPLE: ''tri_wave(0.5)''
SYNTAXDESCRIPTION: empicasso_mesh_settings({{ArgTypeAny}} cells_per_lambda)Computes and returns the periodic triangular wave function of period T = 2, oscillating between two values +1 and -1 and having a value of +1 at x = 0.
EXAMPLE: ''empicasso_mesh_settings(30)''====triangle_strip====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Picasso]]'s planar hybrid mesh generator.triangle_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAny}} angle)
====emlibera_mesh_settings====EXAMPLE: ''triangle_strip("ts_1",0,0,0,50,100,90)''
SYNTAXDESCRIPTION: emlibera_mesh_settings({{ArgTypeAny}} cells_per_lambda)Draws a triangle strip object in the project workspace under the currently activated material group node, or modifies the triangle strip object named 'label' if it already exists.
EXAMPLE: ''emlibera_mesh_settings(30)''====union====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Libera]]'s mesh generator.union({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)
====emferma_mesh_settings====EXAMPLE: ''union("Union_Object","Rect_Strip1","Rect_Strip2")''
SYNTAXDESCRIPTION: emferma_mesh_settings({{ArgTypeAny}} cell_size_x, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z)Creates a Boolean object named 'label' by unioning object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists.
EXAMPLE: ''emferma_mesh_settings(0.5,0.5,0.5)''====virtual_group====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Ferma]]'s fixed-cell mesh generator.virtual_group({{ArgTypeString}} label)
====emterrano_mesh_settings====EXAMPLE: ''virtual_group("VIR_1")''
SYNTAXDESCRIPTION: emterrano_mesh_settings({{ArgTypeAny}} edge_lengthCreates a virtual object group in [[EM.Terrano]]. If the virtual group 'label' already exists, {{ArgTypeAny}} angle_tol)the group is activated.
EXAMPLE: ''emterrano_mesh_settings(5,10)''====voltage_integral====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Terrano]]'s facet mesh generator.voltage_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)
====cubecad_mesh_settings====EXAMPLE: ''voltage_integral("FI_1",0,0,-10,0,0,10)''
SYNTAXDESCRIPTION: cubecad_mesh_settings({{ArgTypeAny}} edge_lengthCreates a voltage integral observable in [[EM.Ferma]]. If the observable 'label' already exists, {{ArgTypeAny}} angle_tol)its properties are modified.
EXAMPLE: ''cubecad_mesh_settings(5,10)''====volume_current_group====
DESCRIPTIONSYNTAX: Sets the parameters of CubeCAD's mesh generator.volume_current_group({{ArgTypeString}} label, {{ArgTypeAny}} Jx, {{ArgTypeAny}} Jy, {{ArgTypeAny}} Jz)
====emtempo_engine_settings====EXAMPLE: ''volume_current_group("Magnet_1",0,0,1e6)''
SYNTAXDESCRIPTION: emtempo_engine_settings({{ArgTypeString}} engineCreates a volume current source group in [[EM.Ferma]]. If the volume current group 'label' already exists, {{ArgTypeAny}} power_threshhold, {{ArgTypeAny}} max_timesteps)the group is activated.
EXAMPLE: ''emtempo_engine_settings("single-precision",-50,20000)''====wave_port====
DESCRIPTIONSYNTAX: Sets the parameters of wave_port({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[[EM.Tempo], {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]'s FDTD simulation engine.)
====emterrano_engine_settings====EXAMPLE: ''wave_port("WP_1","Rect_1",0,0)''
SYNTAXDESCRIPTION: emterrano_engine_settings({{ArgTypeAny}} bounce_countCreates a scattering wave port source in [[EM.Picasso]] or [[EM.Libera]]. If the wave port 'label' already exists, {{ArgTypeAny}} do_edge_diffraction, {{ArgTypeAny}} angular_resolution, {{ArgTypeAny}} ray_threshhold)its properties are modified.
EXAMPLE: ''emterrano_engine_settings(5,1,1,-100)''====waveguide_design====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Terrano]]'s SBR simulation engine.waveguide_design({{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
====empicasso_engine_settings====EXAMPLE: ''waveguide_design(1.0,2e9)''
SYNTAXDESCRIPTION: empicasso_engine_settingsComputes and returns the minimum larger dimension ({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterationsin meters)of the cross section of a hollow rectangular waveguide above cutoff with a material filling of relative permittivity er at an operating frequency of freq_hertz.
EXAMPLE: ''empicasso_engine_settings("bicg",1e-3,1000)''====waveguide_src====
DESCRIPTIONSYNTAX: Sets the parameters of waveguide_src({{ArgTypeString}} label, {{ArgTypeAny}} box_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[[EM.Picasso], {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]'s planar MoM simulation engine.)
====emillumina_engine_settings====EXAMPLE: ''waveguide_src("WG_1","Box_1",50,0)''
SYNTAXDESCRIPTION: emillumina_engine_settings({{ArgTypeString}} engineCreates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label' already exists, {{ArgTypeAny}} is_fixed_iteration, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)its properties are modified.
EXAMPLE: ''emillumina_engine_settings("ipo",0,1e-2,20)''====wire_current_group====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Illumina]]'s Physical Optics simulation engine.wire_current_group({{ArgTypeString}} label, {{ArgTypeAny}} current, {{ArgTypeAny}} wire_radius)
====emferma_engine_settings====EXAMPLE: ''wire_current_group("Magnet_1",1,0.5)''
SYNTAXDESCRIPTION: emferma_engine_settings({{ArgTypeString}} matrix_solverCreates a wire current source group in [[EM.Ferma]]. If the wire current group 'label' already exists, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)the group is activated.
EXAMPLE: ''emferma_engine_settings("bicg-stab",1e-3,100)''====wire_gap_src====
DESCRIPTIONSYNTAX: Sets the parameters of wire_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[[EM.Ferma], {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]'s electrostatic and magnetostatic simulation engines.)
====emlibera_engine_settings_wmom====EXAMPLE: ''wire_gap_src("WIG_1","Line_1",50,0)''
SYNTAXDESCRIPTION: emlibera_engine_settings_wmom({{ArgTypeString}} matrix_solverCreates a wire gap circuit source in [[EM.Libera]]. If the wire gap source 'label' already exists, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)its properties are modified.
EXAMPLE: ''emlibera_engine_settings_wmom("bicg",1e-3,1000)''====zoom_extents====
DESCRIPTIONSYNTAX: Sets the parameters of [[EM.Libera]]'s wire MoM simulation engines.zoom_extents()
====emlibera_engine_settings_smom==== SYNTAX: emlibera_engine_settings_smom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations, {{ArgTypeAny}} ncpus, {{ArgTypeString}} formulation, {{ArgTypeAny}} alpha) EXAMPLE: ''emlibera_engine_settings_smom("bicg",1e-3,1000,4,"efie",0.4)'' DESCRIPTION: Sets Zooms to fit the parameters extents of [[EM.Libera]]'s surface MoM simulation enginesthe physical structure into the screen.
<br />
<hr>
[[Image:Top_icon.png|48px30px]] '''[[#Standard Python Functions Standard_Python_Operators | Back to the Top of the Page]]'''
[[Image:Back_icon.png|40px30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
28,333
edits