<table><tr><td>[[image:Cube-icon.png | link=Getting_Started_with_EM.Cube]] [[image:cad-ico.png | link= Standard Python Functions Building_Geometrical_Constructions_in_CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]]</td><tr></table>[[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''<br />
The table below gives a list of all the currently available library functions in [[EM.Cube]]:== Standard Python Operators ==
{| class="wikitable"
!scope="col"| Type
!scope="col"| Description
!scope="col"| Notes
|-
| style="width:80px;" | abs(x)-p| style="width:150px;" | Std. Python functionoperator| style="width:270px;" | Absolute value functionnegative of p|-| style="width:80px;" | p=q| style="width:150px;" | Std. Python operator| style="width:270px;" | x if xp is equal to q|-| style="width:80px;" | p+q| style="width:150px;" | Std. Python operator| style="width:270px;" | sum of p and q|-| style="width:80px;" | p-q| style="width:150px;" | Std. Python operator| style="width:270px;" | difference p and q|-| style="width:80px;" | p*q| style="width:150px;" | Std. Python operator| style="width:270px;" | product of p and q|-| style="width:80px;" | p/q| style="width:150px;" | Std. Python operator| style="width:270px;" | quotient of p over q|-| style="width:80px;" | p**q| style="width:150px;" | Std. Python operator| style="width:270px;" | p to the power of q|-| style="width:80px;" | p%q| style="width:150px;" | Std. Python operator| style="width:270px;" | p modulus q|-| style="width:80px;" | p==q| style="width:150px;" | Std. Python operator| style="width:270px;" | p logically equal to q|-| style="width:80px;" | p>0, q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is greater than q|-x if x| style="width:80px;" | p>=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is greater than or equal to q|-| style="width:80px;" | p<0q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is less than q|-| style="width:80px;" | p<=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is less than or equal to q|-| style="width:80px;" | !p| style="width:150px;" | Std. Python operator| style="width:270px;" | Logical not p|-| style="width:80px;" | p and q| style="width:150px;" | Std. Python operator| style="width:270px;" | p Boolean and q|-| style="width:80px;" | p or q| style="width:150px;" | Std. Python operator| style="width:270px;" | p Boolean or q
|-
| ceiling(x)
| Std. Python function
| Ceiling function
| Nearest integer >= x
|}
Â
== Basic Mathematical Python Functions ==
{| class="wikitable"
| style="width:80px;" !scope="col"| Syntax| style="width:80px;" !scope="col"| Type| style="width:150px;" !scope="col"| Description| style="width:150px;" !scope="col"| Notes
|-
| floorstyle="width:80px;" | abs(x)| style="width:150px;" | Std. Python function| Floor style="width:270px;" | Absolute value function| Nearest integer <style= "width:270px;" | xif x>0, -x if x<0
|-
| pow(x,y)
| Std. Python function
| Factorial
| For for integer values of x: n! = n(n-1)(n-2)...3.2.1
|-
| max(x,y)
| -
|-
| asinhnp.arcsinh(x)
| Std. Python function
| Inverse hyperbolic sine function
| -
|-
| acoshnp.arccosh(x)
| Std. Python function
| Inverse hyperbolic cosine function
| -
|-
| atanhnp.arctanh(x)
| Std. Python function
| Inverse hyperbolic tangent function
| -
|-
| spnp.sicifloor(x)
| Std. Python function
| Floor function| nearest integer <= x|}Â == Advanced Mathematical Python Functions ==Â {| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description!scope="col"| Notes|-| style="width:80px;" | sp.sici(x)| style="width:150px;" | Std. Python function| style="width:270px;" | Sine and cosine integral functions| See style="width:270px;" | see [https://en.wikipedia.org/wiki/Trigonometric_integral Trigonometric Integrals on Wikipedia.]
|-
| sp.fresnel(x)
| Std. Python function
| Sine and cosine Fresnel integral functions
| See see [https://en.wikipedia.org/wiki/Fresnel_integral Fresnel Integrals on Wikipedia.]
|-
| sp.ellipe(x)
| Std. Python function
| Elliptic function of the first kind
| See see [https://en.wikipedia.org/wiki/Elliptic_integral Elliptic Integrals on Wikipedia.]
|-
| sp.ellipk(x)
| Std. Python function
| Elliptic function of the second kind
| See see [https://en.wikipedia.org/wiki/Elliptic_integral Elliptic Integrals on Wikipedia.]
|-
| sp.expi(x)
| Std. Python function
| Exponential integral function
| See see [https://en.wikipedia.org/wiki/Exponential_integral Exponential Integrals on Wikipedia.]
|-
| sp.expn(n,x)
| Std. Python function
| Generalized exponential integral function of order n
| See see [https://en.wikipedia.org/wiki/Exponential_integral Exponential Integrals on Wikipedia.]|-| gauss(x)| Std. Python function| Gaussian function| -
|-
| sp.erf(x)
| Std. Python function
| Error function
| See see [https://en.wikipedia.org/wiki/Error_function Error Function on Wikipedia.]
|-
| sp.erfc(x)
| Std. Python function
| Complementary error function
| See see [https://en.wikipedia.org/wiki/Error_function Error Function on Wikipedia.]
|-
| sp.gamma(x)
| Std. Python function
| Gamma function
| See see [https://en.wikipedia.org/wiki/Gamma_function Gamma Function on Wikipedia.]
|-
| sp.airy(x)
| Std. Python function
| Airy function of the first (Ai) and second (Bi) kind and their derivatives
| See see [https://en.wikipedia.org/wiki/Airy_function Airy Functions on Wikipedia.]
|-
| sp.j0(x)
| Std. Python function
| Bessel function of the first kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.j1(x)
| Std. Python function
| Bessel function of the first kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.jv(n,x)
| Std. Python function
| Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.y0(x)
| Std. Python function
| Bessel function of the second kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.y1(x)
| Std. Python function
| Bessel function of the second kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.yv(n,x)
| Std. Python function
| Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.i0(x)
| Std. Python function
| Modified Bessel function of the first kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.i1(x)
| Std. Python function
| Modified Bessel function of the first kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.iv(n,x)
| Std. Python function
| Modified Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.k0(x)
| Std. Python function
| Modified Bessel function of the second kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.k1(x)
| Std. Python function
| Modified Bessel function of the second kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.kv(n,x)
| Std. Python function
| Modified Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_jn(n,x)
| Std. Python function
| Spherical Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_yn(n,x)
| Std. Python function
| Spherical Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_in(n,x)
| Std. Python function
| Modified spherical Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_kn(n,x)
| Std. Python function
| Modified spherical Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.lpn(n,x)
| Std. Python function
| Legendre function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomial Legendre Polynomials on Wikipedia.]
|-
| sp.lqn(n,x)
| Std. Python function
| Legendre function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.lpmn(m,n,x)
| Std. Python function
| Associated Legendre function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomial Legendre Polynomials on Wikipedia.]
|-
| sp.lqmn(m,n,x)
| Std. Python function
| Associated Legendre function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.eval_chebyt(n,x)
| Std. Python function
| Chebyshev polynomial of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Chebyshev_polynomials Chebyshev Polynomials on Wikipedia.]
|-
| sp.eval_chebyu(n,x)
| Std. Python function
| Chebyshev polynomial of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Chebyshev_polynomials Chebyshev Polynomials on Wikipedia.]
|-
| sp.eval_legendre(n,x)
| Std. Python function
| Legendre polynomial of order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.eval_laguerre(n,x)
| Std. Python function
| Laguerre polynomial of order n
| See see [https://en.wikipedia.org/wiki/Laguerre_polynomials Laguerre Polynomials on Wikipedia.]
|-
| sp.eval_hermite(n,x)
| Std. Python function
| Hermite polynomial of order n
| See see [https://en.wikipedia.org/wiki/Hermite_polynomials Hermite Polynomials on Wikipedia.]
|-
| Math_cesp.mathieu_cem(n,rq,x)
| Std. Python function
| Even periodic (cosine) Mathieu function of order nand its derivative| See see [https://en.wikipedia.org/wiki/Mathieu_function Mathieu Functions on Wikipedia.]
|-
| Math_sesp.mathieu_sem(n,rq,x)
| Std. Python function
| Odd periodic (sine) Mathieu function of order nand its derivative| See see [https://en.wikipedia.org/wiki/Mathieu_function Mathieu Functions on Wikipedia.]|-| rect(x)| EMAG Python function| Rectangle function| 1 if |x|≤0.5, 0 elsewhere |-| tri(x)| EMAG Python function| Triangle function| 1 if |1-x|≤1, 0 elsewhere |-| spline2(x)| EMAG Python function| Quadratic spline function| -|-| spline3(x)| EMAG Python function| Cubic spline function| -|-| step(x)| EMAG Python function| Step function| 1 if x>0, 0 if x<0|-| sgn(x)| Std. Python function| Sign function| 1 if x>0, -1 if x<0|-| ramp(x)| EMAG Python function| Ramp function| -|-| sqr_wave(x)| EMAG Python function| Square wave function| -|-| tri_wave(x)| EMAG Python function| Triangle wave function| -|-| sawtooth(x)| EMAG Python function| Sawtooth wave function| -|-| sinc(x)| EMAG Python function| Sinc function| sin(pi*x)/(pi*x)|-| rand(x,y)| EMAG Python function| Random function| -|-| Z0_MS(e,x)| EMAG Python function| Characteristic impedance of a microstrip transmission line | x: width-to-height ratio, e: substrate permittivity|-| w_MS(z,e,t)| EMAG Python function| Width of a microstrip transmission line | z: characteristic impedance, e: substrate permittivity, t: substrate thickness|-| eeff_MS(e,x)| EMAG Python function| Effective permittivity of a microstrip transmission line| x: width-to-height ratio, e: substrate permittivity|-| woh_MS(e,z)| EMAG Python function| Width-to-height ratio of a microstrip transmission line | z: characteristic impedance z, e: substrate permittivity|-| style="width:80px;" | Z0_CPW(e,x,y)| style="width:80px;" | EMAG Python function| style="width:150px;" | Characteristic impedance of a coplanar waveguide transmission line | style="width:150px;" | x: slot width-to-height ratio, y: center strip width-to-height ratio, e: substrate permittivity|-| eeff_CPW(e,x,y)| EMAG Python function| Effective permittivity of a coplanar waveguide transmission line | x: slot width-to-height ratio, y: center strip width-to-height ratio, e: substrate permittivity|-| horn_a(d,x,y)| EMAG Python function| Wavelength-normalized a-dimension of an optimal pyramidal horn antenna | d: directivity d, x and y: wavelength-normalized waveguide dimensions|-| horn_b(d,x,y)| EMAG Python function| Wavelength-normalized b-dimension of an optimal pyramidal horn antenna | d: directivity d, x and y: wavelength-normalized waveguide dimensions|-| horn_l(d,x,y)| EMAG Python function| Wavelength-normalized length of an optimal pyramidal horn antenna | d: directivity d, x and y: wavelength-normalized waveguide dimensions
|}
== EM.Cube's Native Python Functions == ====activate==== SYNTAX: activate({{ArgTypeString}} group_node_label) EXAMPLE: ''activate("Color_1")'' DESCRIPTION: Activates a color, material or object group in the current active [[EM.Cube]] module for Object Creation insertion of new objects.  ====add_variable==== SYNTAX: add_variable({{ArgTypeString}} var_name, {{ArgTypeAny}} value) EXAMPLE: ''add_variable("MyVar",1)'' DESCRIPTION: Adds a new variable to [[EM.Cube]]'s variable list. ====array==== SYNTAX: array({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing) EXAMPLE: ''array("Array_1","Rect_Strip_1",4,4,1,50,50,0)'' DESCRIPTION: Creates or modifies an array object. ====array_custom==== SYNTAX: array_custom({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z) EXAMPLE: ''array_custom("Array_1","Rect_Strip_1",4,4,1,50,50,0,100,100,20,0,0,45)'' DESCRIPTION: Creates or modifies an array object and sets its local coordinate system and rotation angles. ====background_layer==== SYNTAX: background_layer({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} thickness) EXAMPLE: ''background_layer("Mid_Layer",3.3,0.001,1,1.5)'' DESCRIPTION: Adds a new substrate layer to [[EM.Picasso]]'s background layer stackup. ====base_point_group==== SYNTAX: base_point_group({{ArgTypeString}} label) EXAMPLE: ''base_point_set("BP_Set_1")'' DESCRIPTION: Creates a base point set in [[EM.Terrano]]. If the base point set group 'label' already exists, the group is activated. ====bh_step==== SYNTAX: bh_step({{ArgTypeReal}} x, {{ArgTypeReal}} T) EXAMPLE: ''bh_step(0.5,1)'' DESCRIPTION: Computes and returns the Blackman-Harris step function. ====bh_window==== SYNTAX: bh_window({{ArgTypeReal}} x, {{ArgTypeReal}} T) EXAMPLE: ''bh_window(0.5,1)'' DESCRIPTION: Computes and returns the Blackman-Harris window function. ====box==== SYNTAX: box({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height[, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''box("Box_1",0,0,0,50,50,100)'' DESCRIPTION: Draws a box object in the project workspace under the currently activated material group node, or modifies the box named 'label' if it already exists. ====capacitance==== SYNTAX: capacitance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''capacitance("FI_1",-10,-10,5,10,10,10,0,0,-10,0,0,10)'' DESCRIPTION: Creates a capacitance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====capacitor==== SYNTAX: capacitor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} capacitance_pF) EXAMPLE: ''capacitor("Cap_1","Line_1",25,10)'' DESCRIPTION: Creates a capacitor in [[EM.Tempo]]. If the capacitor 'label' already exists, its properties are modified. ====charge_group==== SYNTAX: charge_group({{ArgTypeString}} label, {{ArgTypeAny}} density) EXAMPLE: ''charge_group("Charge_1",-1e-5)'' DESCRIPTION: Creates a volume charge source group in [[EM.Ferma]]. If the charge group 'label' already exists, the group is activated. ====circ_strip==== SYNTAX: circ_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} inner_radius, {{ArgTypeAny}} outer_radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]) EXAMPLE: ''circ_strip("cs_1",0,0,0,50,0)'' DESCRIPTION: Draws a circle strip object in the project workspace under the currently activated material group node, or modifies the circle strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the circle strip's azimuth axis. ====circle==== SYNTAX: circle({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle) EXAMPLE: ''circle("pyramid_1",0,0,0,10,10,100)'' DESCRIPTION: Draws a circular curve object in the project workspace under the currently activated material group node, or modifies the circle named 'label' if it already exists. The parameters start_angle and end_angle are in degrees. ====clone==== SYNTAX: clone({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeReal}} x0, {{ArgTypeReal}} y0, {{ArgTypeReal}} z0) EXAMPLE: ''clone("NewObj","MyObj",10,10,0)'' DESCRIPTION: Creates a copy of the specified object and repositions it at the given coordinates.  ====close_curve==== SYNTAX: close_curve({{ArgTypeString}} label, {{ArgTypeString}} close_state) EXAMPLE: ''close_curve("Curve_1",1)'' DESCRIPTION: Sets the open/close state of a polyline or NURBS curve. Use 0 for open curve and 1 for close curve. ====coaxial_design==== SYNTAX: coaxial_design({{ArgTypeReal}} z0, {{ArgTypeReal}} er) EXAMPLE: ''coaxial_design(50,2.2)'' DESCRIPTION: Computes and returns the ratio of the radius of the outer conductor to the radius of the inner conductor of a coaxial transmission line of characteristic impedance z0 (in Ohms) with core relative permittivity er. ====coaxial_src==== SYNTAX: coaxial_src({{ArgTypeString}} label, {{ArgTypeAny}} cylinder_object, {{ArgTypeAny}} outer_radius, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''coaxial_src("COAX_1","Cyl_1",1.5,"+z")'' DESCRIPTION: Creates a coaxial port source in [[EM.Tempo]]. If the coaxial port 'label' already exists, its properties are modified. ====color_group==== SYNTAX: color_group({{ArgTypeString}} label) EXAMPLE: ''color_group("Color_1")'' DESCRIPTION: Creates a color group in CubeCAD module. If the color group 'label' already exists, the group is activated. ====conduction_current_integral==== SYNTAX: conduction_current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''conduction_current_integral("FI_1",-10,-10,0,10,10,0)'' DESCRIPTION: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====conductive_sheet_group==== SYNTAX: conductive_sheet_group({{ArgTypeString}} label, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thickness) EXAMPLE: ''conductive_sheet_group("Cond_1",100, 0.01)'' DESCRIPTION: Creates a conductive sheet group in [[EM.Picasso]]. If the conductive sheet group 'label' already exists, the group is activated. ====cone==== SYNTAX: cone({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} top_radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''cone("Cone_1",0,0,0,30,40,20,0,180)'' DESCRIPTION: Draws a cone object in the project workspace under the currently activated material group node, or modifies the cone named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cone's azimuth axis. ====consolidate==== SYNTAX: consolidate({{ArgTypeString}} object) EXAMPLE: ''consolidate("Poly_1")'' DESCRIPTION: Consolidates a specified object. ====cpw_design_s==== SYNTAX: cpw_design_s({{ArgTypeReal}} z0, {{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er) EXAMPLE: ''cpw_design_s(50,2,0.5,2.2)'' DESCRIPTION: Computes and returns the center strip width (in meters) of a CPW transmission line of characteristic impedance z0 with slot width w, substrate height h and substrate relative permittivity er. ====cpw_design_w==== SYNTAX: cpw_design_w({{ArgTypeReal}} z0, {{ArgTypeReal}} s, {{ArgTypeReal}} h, {{ArgTypeReal}} er) EXAMPLE: ''cpw_design_w(50,1,0.5,2.2)'' DESCRIPTION: Computes and returns the slot width (in meters) of a CPW transmission line of characteristic impedance z0 with center strip width s, substrate height h and substrate relative permittivity er. ====cpw_src==== SYNTAX: cpw_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} spacing, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''cpw_src("CPW_1","Rect_1",1.5,"+x")'' DESCRIPTION: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already exists, its properties are modified. ====cubecad_mesh_settings==== SYNTAX: cubecad_mesh_settings({{ArgTypeAny}} edge_length, {{ArgTypeAny}} angle_tol) EXAMPLE: ''cubecad_mesh_settings(5,10)'' DESCRIPTION: Sets the parameters of CubeCAD's mesh generator. ====current_dist==== SYNTAX: current_dist({{ArgTypeString}} label) EXAMPLE: ''current_dist("CD_1")'' DESCRIPTION: Creates a current distribution observable. If the observable 'label' already exists, its properties are modified. ====current_integral==== SYNTAX: current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''current_integral("FI_1",-10,-10,0,10,10,0)'' DESCRIPTION: Creates a current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====cylinder==== SYNTAX: cylinder({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''cylinder("Cylinder_1",0,0,0,10,100)'' DESCRIPTION: Draws a cylinder object in the project workspace under the currently activated material group node, or modifies the cylinder named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cylinder's azimuth axis. ====delete==== SYNTAX: delete({{ArgTypeString}} node_name) EXAMPLE: ''delete("Box_1")'' DESCRIPTION: Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group.  ====delete_background_layer==== SYNTAX: delete_background_layer({{ArgTypeString}} label) EXAMPLE: ''delete_background_layer("Mid_Layer")'' DESCRIPTION: Deletes a finite-thickness substrate layer from [[EM.Picasso]]'s background layer stackup. ====dielectric_group==== SYNTAX: dielectric_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho) EXAMPLE: ''dielectric_group("Dielectric_1","my_eps",0,1,0)'' DESCRIPTION: Creates a dielectric material group in the current module with the specified material properties. If the dielectric group 'label' already exists, the group is activated. ====diode==== SYNTAX: diode({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} polarity, {{ArgTypeAny}} is_fA, {{ArgTypeAny}} temperature_K, {{ArgTypeAny}} ideality_factor) EXAMPLE: ''diode("Diode_1","Line_1",25,0,10,300,1)'' DESCRIPTION: Creates a diode in [[EM.Tempo]]. If the diode 'label' already exists, its properties are modified. ====distributed_src==== SYNTAX: distributed_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} field_dir, {{ArgTypeAny}} profile[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''distributed_src("DS_1","Rect_1","+y","uniform")'' DESCRIPTION: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already exists, its properties are modified. ====ellipse_strip==== SYNTAX: ellipse_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]) EXAMPLE: ''ellipse_strip("es_1",0,0,0,50,0)'' DESCRIPTION: Draws a ellipse strip object in the project workspace under the currently activated material group node, or modifies the ellipse strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipse strip's azimuth axis. ====ellipsoid==== SYNTAX: ellipsoid({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y, {{ArgTypeAny}} radius_z[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]) EXAMPLE: ''ellipsoid("Ellipsoid_1",0,0,0,100,100,50,0,360)'' DESCRIPTION: Draws an ellipsoid object in the project workspace under the currently activated material group node, or modifies the ellipsoid named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipsoid's azimuth axis. ====emferma_engine_settings==== SYNTAX: emferma_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emferma_engine_settings("bicg-stab",1e-3,100)'' DESCRIPTION: Sets the parameters of [[EM.Ferma]]'s electrostatic and magnetostatic simulation engines. ====emferma_mesh_settings==== SYNTAX: emferma_mesh_settings({{ArgTypeAny}} cell_size_x, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z) EXAMPLE: ''emferma_mesh_settings(0.5,0.5,0.5)'' DESCRIPTION: Sets the parameters of [[EM.Ferma]]'s fixed-cell mesh generator. ====emillumina_engine_settings==== SYNTAX: emillumina_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} is_fixed_iteration, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emillumina_engine_settings("ipo",0,1e-2,20)'' DESCRIPTION: Sets the parameters of [[EM.Illumina]]'s Physical Optics simulation engine. ====emillumina_mesh_settings==== SYNTAX: emillumina_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''emillumina_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Illumina]]'s mesh generator. ====emlibera_engine_settings_smom==== SYNTAX: emlibera_engine_settings_smom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations, {{ArgTypeAny}} ncpus, {{ArgTypeString}} formulation, {{ArgTypeAny}} alpha) EXAMPLE: ''emlibera_engine_settings_smom("bicg",1e-3,1000,4,"efie",0.4)'' DESCRIPTION: Sets the parameters of [[EM.Libera]]'s surface MoM simulation engines. ====emlibera_engine_settings_wmom==== SYNTAX: emlibera_engine_settings_wmom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emlibera_engine_settings_wmom("bicg",1e-3,1000)'' DESCRIPTION: Sets the parameters of [[EM.Libera]]'s wire MoM simulation engines. ====emlibera_mesh_settings==== SYNTAX: emlibera_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''emlibera_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Libera]]'s mesh generator. ====empicasso_engine_settings==== SYNTAX: empicasso_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''empicasso_engine_settings("bicg",1e-3,1000)'' DESCRIPTION: Sets the parameters of [[EM.Picasso]]'s planar MoM simulation engine. ====empicasso_mesh_settings==== SYNTAX: empicasso_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''empicasso_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Picasso]]'s planar hybrid mesh generator. ====emtempo_engine_settings==== SYNTAX: emtempo_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} power_threshhold, {{ArgTypeAny}} max_timesteps) EXAMPLE: ''emtempo_engine_settings("single-precision",-50,20000)'' DESCRIPTION: Sets the parameters of [[EM.Tempo]]'s FDTD simulation engine. ====emtempo_mesh_settings==== SYNTAX: emtempo_mesh_settings({{ArgTypeAny}} cells_per_lambda, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs) EXAMPLE: ''emtempo_mesh_settings(30,0.1,0.1,0.02)'' DESCRIPTION: Sets the parameters of [[EM.Tempo]]'s adaptive mesh generator. ====emterrano_engine_settings==== SYNTAX: emterrano_engine_settings({{ArgTypeAny}} bounce_count, {{ArgTypeAny}} do_edge_diffraction, {{ArgTypeAny}} angular_resolution, {{ArgTypeAny}} ray_threshhold) EXAMPLE: ''emterrano_engine_settings(5,1,1,-100)'' DESCRIPTION: Sets the parameters of [[EM.Terrano]]'s SBR simulation engine. ====emterrano_mesh_settings==== SYNTAX: emterrano_mesh_settings({{ArgTypeAny}} edge_length, {{ArgTypeAny}} angle_tol) EXAMPLE: ''emterrano_mesh_settings(5,10)'' DESCRIPTION: Sets the parameters of [[EM.Terrano]]'s facet mesh generator. ====energy_electric==== SYNTAX: energy_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''energy_electric("FI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates an electric energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====energy_magnetic==== SYNTAX: energy_magnetic({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''energy_magnetic("FI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates a magnetic energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====explode==== SYNTAX: explode({{ArgTypeString}} object) EXAMPLE: ''explode("MyArray")'' DESCRIPTION: Explodes an object into its basic primitives. ====export_dxf==== SYNTAX: export_dxf({{ArgTypeString}} file_name) EXAMPLE: ''export_dxf("MyDXFModel.DXF")'' DESCRIPTION: Exports the physical structure of the project workspacean to a DXF model file. If the file path is not specified, the current project folder is assumed as the path. ====export_py==== SYNTAX: export_py({{ArgTypeString}} file_name) EXAMPLE: ''export_py("MyPYModel.PY")'' DESCRIPTION: Exports the physical structure of the project workspace or the current object selection to a Python geometry file. The default path is the Python subfolder under "Documents → EMAG". ====export_stl==== SYNTAX: export_stl({{ArgTypeString}} file_name) EXAMPLE: ''export_stl("MySTLModel.STL")'' DESCRIPTION: Exports the physical structure of the project workspacean to an STL model file. If the file path is not specified, the current project folder is assumed as the path. ====extrude==== SYNTAX: extrude({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} extrude_height, {{ArgTypeAny}} cap_ends) EXAMPLE: ''extrude("Extrude_1","Rect_Strip1",50)'' DESCRIPTION: Creates or modifies an extrusion object from a specified object by the specified height. If modifying an existing extrusion object, the pre-existing primitive is used. This command can only extrude objects that have a single face and will extrude along the face's normal. ====farfield==== SYNTAX: farfield({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr) EXAMPLE: ''farfield("FF_1",1,1)'' DESCRIPTION: Creates a far-field radiation pattern observable. If the observable 'label' already exists, its properties are modified. ====field_probe==== SYNTAX: field_probe({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: ''field_probe("FS_1",0,0,50)'' DESCRIPTION: Creates a temporal field probe observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====field_sensor==== SYNTAX: field_sensor({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} xSize, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples) EXAMPLE: ''field_sensor("FS_1","z",0,0,0,100,100,0,25,25,0)'' DESCRIPTION: Creates a near-field sensor observable. If the observable 'label' already exists, its properties are modified. ====field_sensor_grid==== SYNTAX: field_sensor_grid({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: ''field_sensor_grid("FS_1","z",0,0,0)'' DESCRIPTION: Creates a near-field sensor observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====fill_curve==== SYNTAX: fill_curve({{ArgTypeString}} object) EXAMPLE: ''fill_curve("Curve_1")'' DESCRIPTION: Fill the interior of the specified closed curve object. ====fillet==== fillet({{ArgTypeString}} object, {{ArgTypeAny}} radius) EXAMPLE: ''fillet("Rect_1",5)'' DESCRIPTION: Fillets the corners of the specified surface or curve object by the specified radius. ====flux_electric==== SYNTAX: flux_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''flux_electric("FI_1",-10,-10,5,10,10,10)'' DESCRIPTION: Creates an electric flux integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====flux_magnetic==== SYNTAX: flux_magnetic({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''flux_magnetic("FI_1",0,0,-10,10,0,10)'' DESCRIPTION: Creates a magnetic flux integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====fractal_tree==== SYNTAX: fractal_tree({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} key_type, {{ArgTypeAny}} key_size, {{ArgTypeAny}} n_level, {{ArgTypeAny}} sep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factor) EXAMPLE: ''fractal_tree("Fractal_1",0,0,0,"line",10,3,30,3,0,0,0)'' DESCRIPTION: Generates a fractal tree in the project workspace under the currently activated material group node, or modifies the fractal tree named 'label' if it already exists. ====freeze==== SYNTAX: freeze({{ArgTypeString}} object, {{ArgTypeReal}} freeze_state) EXAMPLE: ''freeze("MyObj",1)'' DESCRIPTION: Sets the freeze state of an object (0/1).  ====gauss==== SYNTAX: gauss({{ArgTypeReal}} x, ArgTypeReal}} mu, ArgTypeReal}} sigma) EXAMPLE: ''gauss(0.5,0,1)'' DESCRIPTION: Computes and returns the Gaussian function of mean mu and standard deviation sigma: exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi). ====gauss_beam==== SYNTAX: gauss_beam({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization, {{ArgTypeAny}} focus_x, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius, {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_mode) EXAMPLE: ''gauss_beam("PW_1",180,0,"tm",0,0,0,20,0,0)'' DESCRIPTION: Creates a Gaussian beam source in [[EM.Tempo]]. If the Gaussian beam source 'label' already exists, its properties are modified. ====generate_input_files==== SYNTAX: generate_input_files() EXAMPLE: ''generate_input_files()'' DESCRIPTION: Generates all the input files for the simulation engine of the current module without running a simulation. ====geo==== SYNTAX: geo({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''geo(1,2)'' DESCRIPTION: Computes and returns the geometric mean of x and y: sqrt(x*y). ====get_area==== SYNTAX: get_area({{ArgTypeString}} object) EXAMPLE: ''get_area("ellipse_1")'' DESCRIPTION: Returns the area of a surface object or the total surface area of a solid object. ====get_axis==== SYNTAX: get_axis({{ArgTypeString}} object, {{ArgTypeString}} axis, {{ArgTypeString}} coordinate) EXAMPLE: ''get_axis("pyramid_1","x","y")'' DESCRIPTION: Returns the specified coordinate of the unit vector along the specified local axis of an object. ====get_domain_extent==== SYNTAX: get_domain_extent({{ArgTypeString}} coordinate) EXAMPLE: ''get_domain_extent("x")'' DESCRIPTION: Returns the size of the computational domain along the specified direction. ====get_extent==== SYNTAX: get_extent({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_extent("pyramid_1","x")'' DESCRIPTION: Returns the size of the bounding box of an object along the specified direction. ====get_lcs==== SYNTAX: get_lcs({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_lcs("pyramid_1","x")'' DESCRIPTION: Returns the specified coordinate of the LCS of an object. ====get_lcs_offset==== SYNTAX: get_lcs_offset({{ArgTypeString}} object, {{ArgTypeAny}} x_off, {{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off, {{ArgTypeString}} coordinate) EXAMPLE: ''get_lcs_offset("box_1",50,50,0,"x")'' DESCRIPTION: Returns the specified coordinate of the LCS of an object after being translated by the specified offset values along the three principal axes. ====get_length==== SYNTAX: get_length({{ArgTypeString}} object) EXAMPLE: ''get_length("helix_1")'' DESCRIPTION: Returns the length of a curve object. ====get_rot==== SYNTAX: get_rot({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_rot("pyramid_1","x")'' DESCRIPTION: Returns the specified rotation angle of an object. ====get_standard_output==== SYNTAX: get_standard_output({{ArgTypeString}} output_name)  EXAMPLE: ''get_standard_output("S11M")'' DESCRIPTION: Returns the computed value of the specified standard output parameter at the end of a simulation. ====get_vertex==== SYNTAX: get_vertex({{ArgTypeString}} object, {{ArgTypeAny}} node_index, {{ArgTypeString}} coordinate) EXAMPLE: ''get_vertex("pyramid_1",0,"x")'' DESCRIPTION: Returns the specified coordinate of the specified vertex of the bounding box of an object. The vertices are specified by node indices. The lower front left corner has an index of 0, while the upper back right corner has an index of 7. The indices are numbered counterclockwise, with the bottom face first and top face next.  ====get_volume==== SYNTAX: get_volume({{ArgTypeString}} object) EXAMPLE: ''get_volume("pyramid_1")'' DESCRIPTION: Returns the volume of a solid object. ====global_ground==== SYNTAX: global_ground({{ArgTypeAny}} ground_on, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: ''global_ground(1,3.3,0.001)'' DESCRIPTION: Set the state of [[EM.Terrano]]'s global ground and its material properties. A zero value for ground_on means to no global ground assumed at Z = 0.  ====group==== SYNTAX: group({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2, ...) EXAMPLE: ''group("Composite_1","Box_1","Box_2","Box_3")'' DESCRIPTION: Groups a number of objects into a composite object with the given label. ====harm==== SYNTAX: harm({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''harm(1,2)'' DESCRIPTION: Computes and returns the harmonic mean of x and y: 2/(1/x+1/y). ====helix==== SYNTAX: helix({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} helix_dir) EXAMPLE: ''helix("Helix_1",0,0,0,15,15,10,0)'' DESCRIPTION: Draws a helical curve in the project workspace under the currently activated material group node, or modifies the helix named 'label' if it already exists. The parameter "radius_inner" specifies the helix's radius at the beginning of the helix, and radius_outer specifies the radius at the end of the helix. If the Boolean parameter "helixl_dir" is 1, the helical curve will be drawn counter-clockwise. ====horn_design_a==== SYNTAX: horn_design_a({{ArgTypeReal}} D0_dB, {{ArgTypeReal}} a_lambda, {{ArgTypeReal}} b_lambda) EXAMPLE: ''horn_design_a(15,0.4,0.3)'' DESCRIPTION: Computes and returns the wavelength-normalized larger dimension of the aperture of an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda. ====horn_design_b==== SYNTAX: horn_design_b({{ArgTypeReal}} D0_dB, {{ArgTypeReal}} a_lambda, {{ArgTypeReal}} b_lambda) EXAMPLE: ''horn_design_b(15,0.4,0.3)'' DESCRIPTION: Computes and returns the wavelength-normalized smaller dimension of the aperture of an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda. ====horn_design_l==== SYNTAX: horn_design_l({{ArgTypeReal}} D0_dB, {{ArgTypeReal}} a_lambda, {{ArgTypeReal}} b_lambda) EXAMPLE: ''horn_design_l(15,0.4,0.3)'' DESCRIPTION: Computes and returns the wavelength-normalized length of an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda. ====huygens_src==== SYNTAX: huygens_src({{ArgTypeString}} label, {{ArgTypeAny}} filename[, {{ArgTypeAny}} set_lcs, {{ArgTypeAny}} polarization, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} x_rot, {{ArgTypeAny}} y_rot, {{ArgTypeAny}} z_rot]) EXAMPLE: ''huygens_src("HS_1","Huygens_1.HUY",1,100,100,0,0,0,0)'' DESCRIPTION: Creates a Huygens source. If the Huygens source 'label' already exists, its properties are modified. ====huygens_surface==== SYNTAX: huygens_surface({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples) EXAMPLE: ''huygens_surface("HS_1",-10,-10,-10,10,10,10,40,40,40)'' DESCRIPTION: Creates a Huygens surface observable. If the observable 'label' already exists, its properties are modified. ====huygens_surface_grid==== SYNTAX: huygens_surface_grid({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''huygens_surface_grid("HS_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates a Huygens surface observable in [[EM.Tempo]]. If the observable 'label' already exists, its properties are modified. ====hyperbola==== SYNTAX: hyperbola({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only) EXAMPLE: ''hyperbola("Hyperbola _1",0,0,0,50,40,20,0)'' DESCRIPTION: Draws a hyperbola object in the project workspace under the currently activated material group node, or modifies the hyperbola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the hyperbola will be drawn.  ====impedance_surface_group==== SYNTAX: impedance_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imag) EXAMPLE: ''impedance_surface_group("IMP_1",100,-100)'' DESCRIPTION: Creates a impedance_surface group in [[EM.Illumina]]. If the impedance surface group 'label' already exists, the group is activated. ====impenetrable_surface_group==== SYNTAX: impenetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: ''impenetrable_surface_group("Impenet_1",2.2,0.0001)'' DESCRIPTION: Creates an impenetrable surface group in [[EM.Terrano]]. If the impenetrable surface group 'label' already exists, the group is activated. ====import_dxf==== SYNTAX: import_dxf({{ArgTypeString}} file_name) EXAMPLE: ''import_dxf("MyDXFModel.DXF")'' DESCRIPTION: Imports an external DXF model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_igs==== SYNTAX: import_igs({{ArgTypeString}} file_name) EXAMPLE: ''import_igs("MyIGSModel.IGS")'' DESCRIPTION: Imports an external IGES model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_py==== SYNTAX: import_py({{ArgTypeString}} file_name) EXAMPLE: ''import_py("MyPYModel.PY")'' DESCRIPTION: Imports a Python geometry file to the project workspace. The default path is the Python subfolder under "Documents → EMAG". ====import_stl==== SYNTAX: import_stl({{ArgTypeString}} file_name) EXAMPLE: ''import_stl("MySTLModel.STL")'' DESCRIPTION: Imports an external STL model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_stp==== SYNTAX: import_stp({{ArgTypeString}} file_name) EXAMPLE: ''import_stp("MySTPModel.STP")'' DESCRIPTION: Imports an external STEP model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====inductance==== SYNTAX: inductance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''inductance("FI_1",0,0,-10,10,0,10,2.5,-2.5,0,7.5,2.5,0)'' DESCRIPTION: Creates a inductance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====inductor==== SYNTAX: inductor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} inductance_nH) EXAMPLE: ''inductor("Cap_1","Line_1",25,10)'' DESCRIPTION: Creates a inductor in [[EM.Tempo]]. If the inductor 'label' already exists, its properties are modified. ====intersect==== SYNTAX: intersect({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2) EXAMPLE: ''intersect("Intersection_Object","Rect_Strip1","Rect_Strip2")'' DESCRIPTION: Creates a Boolean object named 'label' by intersecting object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists. ====line==== SYNTAX: line({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length[, {{ArgTypeAny}} dir]) EXAMPLE: ''line("my_line",0,0,0,100,"x")'' DESCRIPTION: Draws a Line object in the project workspace under the currently activated material group node, or modifies the line named 'label' if it already exists. Without the argument "dir", a vertical line is drawn by default.  ====loft==== SYNTAX: loft({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} loft_height, {{ArgTypeAny}} cap_base) EXAMPLE: ''loft("Loft_1","Rect_Strip1",50)'' DESCRIPTION: Creates or modifies a loft object from a specified object by the specified height. If modifying an existing loft object, the pre-existing primitive is used. This command can only loft objects that have a single face and will loft along the face's normal. ====lumped_src==== SYNTAX: lumped_src({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''lumped_src("LS_1","Line_1",50,0)'' DESCRIPTION: Creates a lumped source in [[EM.Tempo]]. If the lumped source 'label' already exists, its properties are modified. ====magnet_group==== SYNTAX: magnet_group({{ArgTypeString}} label, {{ArgTypeAny}} mu, {{ArgTypeAny}} Mx, {{ArgTypeAny}} My, {{ArgTypeAny}} Mz) EXAMPLE: ''magnet_group("Magnet_1",1,0,0,100)'' DESCRIPTION: Creates a permanent magnet source group in [[EM.Ferma]]. If the magnet group 'label' already exists, the group is activated. ====mcos==== SYNTAX: mcos({{ArgTypeReal}} x, {{ArgTypeReal}} r) EXAMPLE: ''mcos(0.5,2)'' DESCRIPTION: Computes and returns the super-quadratic cosine function of order r. ====mean==== SYNTAX: mean({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''mean(1,2)'' DESCRIPTION: Computes and returns the arithmetic mean of x and y: 0.5*(x+y). ====merge_curve==== SYNTAX: merge_curve({{ArgTypeString}} object_1, {{ArgTypeString}} object_2) EXAMPLE: ''merge_curve("Curve_1","Curve_2")'' DESCRIPTION: Merges two specified curve objects into a single curve. ====mesh==== SYNTAX: mesh() DESCRIPTION: Generates and displays the mesh of the physical structure. ====microstrip_design==== SYNTAX: microstrip_design({{ArgTypeReal}} z0, {{ArgTypeReal}} er) EXAMPLE: ''microstrip_design(50,2.2)'' DESCRIPTION: Computes and returns the width-to-height ratio of a microstrip transmission line with characteristic impedance z0 in Ohms and substrate relative permittivity er. ====microstrip_eps_eff==== SYNTAX: microstrip_eps_eff({{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er) EXAMPLE: ''microstrip_eps_eff(2,0.5,2.2)'' DESCRIPTION: Computes and returns the effective permittivity of a microstrip transmission line with width w, substrate height h and substrate relative permittivity er. ====microstrip_lambda_g==== SYNTAX: microstrip_lambda_g({{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz) EXAMPLE: ''microstrip_lambda_g(2,0.5,2.2,2e9)'' DESCRIPTION: Computes and returns the guide wavelength (in meters) of a microstrip transmission line with width w, substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz. ====microstrip_src==== SYNTAX: microstrip_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} height, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''microstrip_src("MS_1","Rect_1",1.5,"+x")'' DESCRIPTION: Creates a microstrip port source in [[EM.Tempo]]. If the microstrip port 'label' already exists, its properties are modified. ====microstrip_z0==== SYNTAX: microstrip_z0({{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er) EXAMPLE: ''microstrip_z0(2,0.5,2.2)'' DESCRIPTION: Computes and returns the characteristic impedance (in Ohms) of a microstrip transmission line with width w, substrate height h and substrate relative permittivity er. ====microstrip_zoc==== SYNTAX: microstrip_zoc({{ArgTypeReal}} w, {{ArgTypeReal}} l, {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz) EXAMPLE: ''microstrip_zoc(2,25,0.5,2.2,2e9)'' DESCRIPTION: Computes and returns the input reactance (in Ohms) of an open-circuited microstrip transmission line with width w, length l, substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz. ====microstrip_zsc==== SYNTAX: microstrip_zsc({{ArgTypeReal}} w, {{ArgTypeReal}} l, {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz) EXAMPLE: ''microstrip_zsc(2,25,0.5,2.2,2e9)'' DESCRIPTION: Computes and returns the input reactance (in Ohms) of a short-circuited microstrip transmission line with width w, length l, substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz. ====mirror==== SYNTAX: mirror({{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ) EXAMPLE: ''mirror("pyramid_1",0,0,0,1,0,0)'' DESCRIPTION: Mirrors an object in a plane defined by the specified point coordinates and specified normal vector components. ====move_to==== SYNTAX: move_to({{ArgTypeString}} object, {{ArgTypeString}} group_node_label[, {{ArgTypeString}} module_name]) EXAMPLE: ''move_to("NewObj","MyObj",10,10,0)'' DESCRIPTION: Transfers an object from its current material/object group node in the navigation tree to another node or optionally to another [[EM.Cube]] module.  ====msin==== SYNTAX: msin({{ArgTypeReal}} x, {{ArgTypeReal}} r) EXAMPLE: ''msin(0.5,2)'' DESCRIPTION: Computes and returns the super-quadratic sine function of order r. ====nurbs_curve==== SYNTAX: nurbs_curve({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn) EXAMPLE: ''nurbs_curve("nc_1",(0,0,0),(1,0,0),(1,0,0))'' DESCRIPTION: Creates or modifies a NURBS Curve object in the project workspace. Each point is represented with a Python tuple type. The curve is closed if p0 is specified again as pn, otherwise, it is open. ====nurbs_strip==== SYNTAX: nurbs_strip({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn) EXAMPLE: ''nurbs_strip("ns_1",(0,0,0),(1,0,0),(1,0,0))'' DESCRIPTION: Creates or modifies a NURBS Strip object in the project workspace. Each point is represented with a Python tuple type. The nurbs_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list. ====ohmic_loss==== SYNTAX: ohmic_loss({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''ohmic_loss("FI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates an ohmic loss integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====parabola==== SYNTAX: parabola({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} focal_length, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only) EXAMPLE: ''parabola("Parabola _1",0,0,0,50,20,0)'' DESCRIPTION: Draws a parabola object in the project workspace under the currently activated material group node, or modifies the parabola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the parabola will be drawn.  ====param_curve==== SYNTAX: param_curve({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} model, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start, {{ArgTypeAny}} stop, {{ArgTypeAny}} step, {{ArgTypeAny}} function[, {{ArgTypeAny}} y(t), {{ArgTypeAny}} z(t)]) EXAMPLE: ''param_curve("Curve_1",0,0,0,"parametric","xy",0,10,0.1,"cos(t)","sin(t)","t")'' DESCRIPTION: Generates a parametric curve in the project workspace under the currently activated material group node, or modifies the parametric curve named 'label' if it already exists. ====param_surface==== SYNTAX: param_surface({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start1, {{ArgTypeAny}} stop1, {{ArgTypeAny}} step1, , {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} function) EXAMPLE: ''param_surface("Surf_1",0,0,0,"xy",0,10,0.1,0,10,0.1,"sin(x)*sin(y)")'' DESCRIPTION: Generates a parametric surface in the project workspace under the currently activated material group node, or modifies the parametric surface named 'label' if it already exists. ====pec_group==== SYNTAX: pec_group({{ArgTypeString}} label) EXAMPLE: ''pec_group("PEC_1")'' DESCRIPTION: Creates a PEC material group in the current module. If the PEC group 'label' already exists, the group is activated. ====pec_via_group==== SYNTAX: pec_via_group({{ArgTypeString}} label, {{ArgTypeAny}} host_layer) EXAMPLE: ''pec_via_group("PEC_1",10)'' DESCRIPTION: Creates an embedded PEC via set group in the current module. If the PEC via group 'label' already exists, the group is activated. ====pec_voltage_group==== SYNTAX: pec_voltage_group({{ArgTypeString}} label, {{ArgTypeAny}} voltage) EXAMPLE: ''pec_voltage_group("PEC_1",10)'' DESCRIPTION: Creates a fixed-potential PEC object group in the current module. If the PEC group 'label' already exists, the group is activated. ====penetrable_surface_group==== SYNTAX: penetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thickness) EXAMPLE: ''penetrable_surface_group("Penet_1",2.2,0.0001, 1)'' DESCRIPTION: Creates a penetrable surface group in [[EM.Terrano]]. If the penetrable surface group 'label' already exists, the group is activated. ====penetrable_volume_group==== SYNTAX: penetrable_volume_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: ''penetrable_volume_group("Vol_Penet_1",2.2,0.0001)'' DESCRIPTION: Creates a penetrable volume group in [[EM.Terrano]]. If the penetrable volume group 'label' already exists, the group is activated. ====pipe_sweep==== SYNTAX: pipe_sweep({{ArgTypeString}} object, {{ArgTypeAny}} radius) EXAMPLE: ''pipe_sweep("Curve_1",5)'' DESCRIPTION: Creates a pipe version of a given curve object. ====planewave==== SYNTAX: planewave({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization) 'EXAMPLE: ''planewave("PW_1",180,0,"tm")'' DESCRIPTION: Creates a plane wave source. If the plane wave source 'label' already exists, its properties are modified. ====plot_file==== SYNTAX: plot_file({{ArgTypeString}} filename)  EXAMPLE: ''plot_file("D0.DAT")'' DESCRIPTION: Plots the contents of a specified data file in EM.Grid. ====pmc_group==== SYNTAX: pmc_group({{ArgTypeString}} label) EXAMPLE: ''pmc_group("PMC_1")'' DESCRIPTION: Creates a PMC material group in the current module. If the PMC group 'label' already exists, the group is activated. ====point==== SYNTAX: point({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: ''point("Point_1",0,0,10)'' DESCRIPTION: Draws a point in the project workspace under the currently activated material group node, or modifies the point named 'label' if it already exists. ====polygon_reg==== SYNTAX: polygon_reg({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sides) EXAMPLE: ''polygon_reg("ts_1",0,0,0,50,100,80,1)'' DESCRIPTION: Draws a regular polygon object in the project workspace under the currently activated material group node, or modifies the regular polygon object named 'label' if it already exists.  ====polygonize==== SYNTAX: polygonize({{ArgTypeString}} object, {{ArgTypeAny}} side_length) EXAMPLE: ''polygonize("Cric_1",2)'' DESCRIPTION: Polygonizes the specified surface or curve object by the specified side length. The results is a polystrip or a polyline. ====polyline==== SYNTAX: polyline({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn) EXAMPLE: ''polyline("pl_1",(0,0,0),(1,0,0),(1,0,0))'' DESCRIPTION: Creates or modifies a PolyLine object in the project workspace. Each point is represented with a Python tuple type. The poly_line is closed if p0 is specified again as pn, otherwise, it is open. ====polymesh==== SYNTAX: polymesh({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} edge_length) EXAMPLE: ''polymesh("Poly_1","Cric_1",2)'' DESCRIPTION: Discretizes the specified solid or surface object by the specified edge length. The results is a polymesh object. ====polystrip==== SYNTAX: polystrip({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn) EXAMPLE: ''polystrip("ps_1",(0,0,0),(1,0,0),(1,0,0))'' DESCRIPTION: Creates or modifies a Polystrip object in the project workspace. Each point is represented with a Python tuple type. The poly_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list. ====port_definition_custom==== SYNTAX: port_definition_custom({{ArgTypeString}} label, ({{ArgTypeString}} port_1_src_1, {{ArgTypeString}} port_1_src_2, ..., {{ArgTypeString}} port_1_impedance), ({{ArgTypeString}} port_2_src_1, {{ArgTypeString}} port_2_src_2, ..., {{ArgTypeString}} port_2_impedance), ...) EXAMPLE: ''port_definition_custom("PD_1",("LS_1","LS_2",50),,("LS_3","LS_4",50))'' DESCRIPTION: Creates a custom port definition observable. If the observable 'label' already exists, its properties are modified. ====port_definition_default==== SYNTAX: port_definition_default({{ArgTypeString}} label) EXAMPLE: ''port_definition_default("PD_1")'' DESCRIPTION: Creates a default port definition observable. If the observable 'label' already exists, its properties are modified. ====probe_gap_src==== SYNTAX: probe_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} via_object, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''probe_gap_src("Probe_1","Via_1",0)'' DESCRIPTION: Creates a probe gap circuit source in [[EM.Picasso]]. If the probe gap source 'label' already exists, its properties are modified. ====pyramid==== SYNTAX: pyramid({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height) EXAMPLE: ''pyramid("Pyramid_1",0,0,0,10,10,100)'' DESCRIPTION: Draws a pyramid object in the project workspace under the currently activated material group node, or modifies the pyramid named 'label' if it already exists. ====radial_strip==== SYNTAX: radial_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} base_length, {{ArgTypeAny}} angle) EXAMPLE: ''radial_strip("Radial_1",0,0,0,50,0,90)'' DESCRIPTION: Draws a radial strip object in the project workspace under the currently activated material group node, or modifies the radial strip object named 'label' if it already exists.  ====rail_sweep==== SYNTAX: rail_sweep({{ArgTypeString}} rail_object, {{ArgTypeString}} sweep_object) EXAMPLE: ''rail_sweep("Curve_1","Curve_2")'' DESCRIPTION: Rail-sweeps the specified sweep object along the specified curve object. ====ramp==== SYNTAX: ramp({{ArgTypeReal}} x) EXAMPLE: ''ramp(0.5)'' DESCRIPTION: Computes and returns the ramp function: x if x>0, 0 if x<0. ====rand==== SYNTAX: rand({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''rand(0,1)'' DESCRIPTION: Computes and returns a random number between x and y using an uniform distribution. ====random_group==== SYNTAX: random_group({{ArgTypeString}} label, {{ArgTypeString}} key_object, {{ArgTypeString}} container_object, {{ArgTypeAny}} element_count) EXAMPLE: ''random_group("Rand_1","Rect_1","Box_1",100)'' DESCRIPTION: Creates a random group using the specified key object and confines them in the specified container object. ====rcs_bistatic==== SYNTAX: rcs_bistatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency]) EXAMPLE: ''rcs_bistatic("RCS_1",1,1)'' DESCRIPTION: Creates a bistatic RCS observable. The frequency can also be optionally specified for [[EM.Tempo]]. If the observable 'label' already exists, its properties are modified. ====rcs_monostatic==== SYNTAX: rcs_monostatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency]) EXAMPLE: ''rcs_monostatic("RCS_1",1,1)'' DESCRIPTION: Creates a monostatic RCS observable. The frequency can also be optionally specified for [[EM.Tempo]]. If the observable 'label' already exists, its properties are modified. ====receiver_set==== SYNTAX: receiver_set({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z) EXAMPLE: ''receiver_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)'' DESCRIPTION: Creates a receiver set in [[EM.Terrano]]. If the receiver set 'label' already exists, its properties are modified. ====rect==== SYNTAX: rect({{ArgTypeReal}} x) EXAMPLE: ''rect(0.1)'' DESCRIPTION: Computes and returns the rectangular window function: 1 if x<0.5, 0 elsewhere. ====rect_gap_src==== SYNTAX: rect_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''rect_gap_src("GAP_1","Rect_1",0,0)'' DESCRIPTION: Creates a strip gap circuit source in [[EM.Picasso]] or [[EM.Libera]]. If the strip gap source 'label' already exists, its properties are modified. ====rect_strip==== SYNTAX: rect_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side_x, {{ArgTypeAny}} side_y) EXAMPLE: ''rect_strip("my_rectangle",0,0,0,50,20)'' DESCRIPTION: Draws a rectangle Strip object in the project workspace under the currently activated material group node, or modifies the rectangle strip object named 'label' if it already exists. ====rename==== SYNTAX: rename({{ArgTypeString}} new_label, {{ArgTypeString}} old_label) EXAMPLE: ''rename("Box_2","Box_1")'' DESCRIPTION: Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group.  ====resistance==== SYNTAX: resistance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''resistance("FI_1",0,0,-10,0,0,10,-10,-10,0,10,10,0)'' DESCRIPTION: Creates a resistance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====resistor==== SYNTAX: resistor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} resistance) EXAMPLE: ''resistor("Res_1","Line_1",25,50)'' DESCRIPTION: Creates a resistor in [[EM.Tempo]]. If the resistor 'label' already exists, its properties are modified. ====revolve==== SYNTAX: revolve({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} rot_angle) EXAMPLE: ''revolve("Rev1","Line_1",0,0,0,0,0,1,360)'' DESCRIPTION: Creates or modifies a revolution object from a specified object. If modifying an existing revolution object, the pre-existing primitive object is used. (x0,y0,z0) specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degrees. ====rosen==== SYNTAX: rosen({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} a, {{ArgTypeReal}} b) EXAMPLE: ''rosen(0.5,0,1,2)'' DESCRIPTION: Computes and returns the Rosenbrock function: (a-x)**2 + b*(y-x**2)**2. ====rotate==== SYNTAX: rotate({{ArgTypeString}} object, {{ArgTypeAny}} rot_angle_degree, {{ArgTypeAny}} rot_axis_x, {{ArgTypeAny}} rot_axis_y, {{ArgTypeAny}} rot_axis_z) EXAMPLE: ''rotate("pyramid_1",45,1,1,0)'' DESCRIPTION: Rotates an object about a line passing through its LCS center and aligned along the specified direction vector (rot_axis) by the specified angle. ====roughen==== SYNTAX: roughen({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} rms_height, {{ArgTypeAny}} correl_length) EXAMPLE: ''roughen("Rect_1",1,5)'' DESCRIPTION: Roughens the surface of the specified object based on the specified RMS height and correlation length. ====run_analysis==== SYNTAX: run_analysis() DESCRIPTION: Runs a simulation in the current active [[EM.Cube]] computational module. ====save_data==== SYNTAX: save_data({{ArgTypeString}} directory_name)  EXAMPLE: ''save_data("Simulation_Data")'' DESCRIPTION: Saves [[EM.Cube]]'s output simulation data files under the specified directory. ====sawtooth==== SYNTAX: sawtooth({{ArgTypeReal}} x) EXAMPLE: ''sawtooth(0.5)'' DESCRIPTION: Computes and returns the ascending periodic sawtooth function of period T = 2, oscillating between two values +1 and -1 and having a zero value of at x = 0. ====scale==== SYNTAX: scale({{ArgTypeString}} object, {{ArgTypeAny}} scale_factor) EXAMPLE: ''scale("pyramid_1",2)'' DESCRIPTION: Scales an object by the specified scale factor. ====select_module==== SYNTAX: select_module({{ArgTypeString}} module_name) EXAMPLE: ''select_module("[[EM.Tempo]]")'' DESCRIPTION: Selects and sets [[EM.Cube]]'s active module. ====set_bandwidth==== SYNTAX: set_bandwidth({{ArgTypeAny}} value) EXAMPLE: ''set_bandwidth(1e9)'' DESCRIPTION: Sets [[EM.Cube]]'s frequency bandwidth. ====set_boundary_conditions==== SYNTAX: set_boundary_conditions({{ArgTypeString}} xn_type, {{ArgTypeString}} xp_type, {{ArgTypeString}} yn_type, {{ArgTypeString}} yp_type, {{ArgTypeString}} zn_type, {{ArgTypeString}} zp_type) EXAMPLE: ''set_domain_offset_lambda("pml","pml","pml","pml","pec","pml")'' DESCRIPTION: Sets [[EM.Tempo]]'s domain boundary conditions domain offset on the ±X, ±Y and ±Z boundary walls. The options are "pec", "pmc" and "pml". ====set_domain_offset==== SYNTAX: set_domain_offset({{ArgTypeAny}} dxn_offset, {{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAny}} dzn_offset, {{ArgTypeAny}} dzp_offset) EXAMPLE: ''set_domain_offset(20,20,20,20,0,10)'' DESCRIPTION: Sets the domain offset values along the ±X, ±Y and ±Z directions in project units. ====set_domain_offset_lambda==== SYNTAX: set_domain_offset_lambda({{ArgTypeAny}} dxn_offset, {{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAny}} dzn_offset, {{ArgTypeAny}} dzp_offset) EXAMPLE: ''set_domain_offset_lambda(0.1,0.1,0.1,0.1,0,0.25)'' DESCRIPTION: Sets the domain offset values along the ±X, ±Y and ±Z directions in free-space wavelengths. ====set_frequency==== SYNTAX: set_frequency({{ArgTypeAny}} value) EXAMPLE: ''set_frequency(2.4e9)'' DESCRIPTION: Sets [[EM.Cube]]'s center frequency. ====set_lcs_link==== SYNTAX: set_lcs_link({{ArgTypeString}} object, {{ArgTypeString}} lcs_obj, {{ArgTypeAny}} x_off, {{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off) EXAMPLE: ''set_lcs_link("pyramid_1","box_1",50,50,0)'' DESCRIPTION: Links the LCS of the first object to the LCS of the second object by the specified offset values along the three axes. ====set_periodic==== SYNTAX: set_periodic({{ArgTypeAny}} is_periodic, {{ArgTypeAny}} spacingX, {{ArgTypeAny}} spacingY)  EXAMPLE: ''set_periodic(1,50,50)'' DESCRIPTION: Designates the physical structure as periodic and sets the periods along the X and Y directions. ====set_rot==== SYNTAX: set_rot({{ArgTypeString}} object, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z) EXAMPLE: ''set_rot("pyramid_1",0,0,45)'' DESCRIPTION: Sets the three rotation angles of an object. ====set_rot_link==== SYNTAX: set_rot_link({{ArgTypeString}} object, {{ArgTypeString}} lcs_obj, {{ArgTypeAny}} x_off_deg, {{ArgTypeAny}} y_off_deg, {{ArgTypeAny}} z_off_deg) EXAMPLE: ''set_rot_link("pyramid_1","box_1",0,0,45)'' DESCRIPTION: Links the rotation angles of the LCS of the first object to the rotation angles of the LCS of the second object by the specified angle offset values in degrees along the three axes. ====set_stackup_order==== SYNTAX: set_stackup_order("THS", {{ArgTypeString}} label_1, {{ArgTypeString}} label_2, ..., {{ArgTypeString}} label_n, "BHS") EXAMPLE: ''background_layer("THS","Top_Layer","Mid_Layer","Bottom_Layer","BHS")'' DESCRIPTION: Sets the hierarchy of [[EM.Picasso]]'s background layer stackup from top to bottom. The sequence should always start with "THS" standing for the top half-space and must end in "BHS" standing for the bottom half-space. All the intermediate finite-thickness substrate layers must be included and listed in the right order.  ====set_units==== SYNTAX: set_units({{ArgTypeString}} units) EXAMPLE: ''set_units("meter")'' DESCRIPTION: Sets [[EM.Cube]]'s project length units. ====sgn==== SYNTAX: sgn({{ArgTypeReal}} x) EXAMPLE: ''sgn(-1.0)'' DESCRIPTION: Computes and returns the signum function: 1 if x>0, -1 if x<0. ====short_dipole==== SYNTAX: short_dipole({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase) EXAMPLE: ''short_dipole("SD_1",0,0,50,3,0,0,1,1,0)'' DESCRIPTION: Creates a Hertzian short dipole source. If the short dipole source 'label' already exists, its properties are modified. ====sigmoid==== SYNTAX: sigmoidnc({{ArgTypeReal}} x, {{ArgTypeReal}} a) EXAMPLE: ''sigmoid(0.5,1)'' DESCRIPTION: Computes and returns the sigmoid function of slope a: 2/(1 + exp(-a*x)) - 1. ====sinc==== SYNTAX: sinc({{ArgTypeReal}} x) EXAMPLE: ''sinc(0.5)'' DESCRIPTION: Computes and returns the sinc function: sin(pi*x)/(pi*x). ====slice==== SYNTAX: slice({{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ) EXAMPLE: ''slice("Rect_1",5)'' DESCRIPTION: Slices the specified object into two parts using the specified plane given by the point coordinates and normal vector coordinates. ====slot_group==== SYNTAX: slot_group({{ArgTypeString}} label) EXAMPLE: ''slot_group("PMC_1")'' DESCRIPTION: Creates a slot trace group in the current module. If the slot trace group 'label' already exists, the group is activated. ====solution_plane==== SYNTAX: solution_plane({{ArgTypeString}} label, {{ArgTypeAny}} field_sensor_label, {{ArgTypeAny}} is_quasi) EXAMPLE: ''solution_plane("FI_1","FS_1",1)'' DESCRIPTION: Creates a 2D solution plane observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====sphere==== SYNTAX: sphere({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]) EXAMPLE: ''sphere("Sphere_1",0,0,0,10,0,180)'' DESCRIPTION: Draws a sphere object in the project workspace under the currently activated Material Group node, or modifies the sphere named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the sphere's azimuth axis. ====spiral_curve==== SYNTAX: spiral_curve({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual) EXAMPLE: ''spiral_curve("Spiral _1",0,0,0,10,50,5,0,0)'' DESCRIPTION: Draws a spiral curve object in the project workspace under the currently activated material group node, or modifies the spiral curve named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawn.  ====spiral_strip==== SYNTAX: spiral_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} width, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual) EXAMPLE: ''spiral_strip("Spiral _1",0,0,0,10,50,5,0,0)'' DESCRIPTION: Draws a spiral strip object in the project workspace under the currently activated material group node, or modifies the spiral strip named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawn.  ====spline_fit==== SYNTAX: spline_fit({{ArgTypeString}} object) EXAMPLE: ''spline_fit("Poly_1")'' DESCRIPTION: Applies spline fit transformation on a specified polymesh, polyline or polystrip object. ====spline2==== SYNTAX: spline2({{ArgTypeReal}} x) EXAMPLE: ''spline2(1.0)'' DESCRIPTION: Computes and returns the quadratic B-spline function. ====spline3==== SYNTAX: spline3({{ArgTypeReal}} x) EXAMPLE: ''spline3(1.0)'' DESCRIPTION: Computes and returns the cubic B-spline function. ====sqr_wave==== SYNTAX: sqr_wave({{ArgTypeReal}} x) EXAMPLE: ''sqr_wave(0.5)'' DESCRIPTION: Computes and returns the periodic square wave function of period T = 2, oscillating between two values +1 and -1 and having a value of +1 at x = 0. ====sqr2==== SYNTAX: sqr2({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''sqr2(0,1)'' DESCRIPTION: Computes and returns the sum of squares of x and y: x**2 + y**2. ====sqr3==== SYNTAX: sqr2({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} z) EXAMPLE: ''sqr2(0,1,2)'' DESCRIPTION: Computes and returns the sum of squares of x, y and z: x**2 + y**2 + z**2. ====sqrt2==== SYNTAX: sqrt2({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''sqrt2(0,1)'' DESCRIPTION: Computes and returns the radius of the 2D point (x,y): sqrt(x**2 + y**2). ====sqrt3==== SYNTAX: sqrt3({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} z) EXAMPLE: ''sqrt3(0,1,2)''
====boxDESCRIPTION: Computes and returns the radius of the 3D point ({{ArgTypeString}} labelx, {{ArgTypeAny}} x0y, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} width, {{ArgTypeAny}} heightz): sqrt(x**2 + y**2 + z**2)====.
''Example:box("my_box",0,0,0,"x",y,100)''====step====
DescriptionSYNTAX: Draws a Box object in the scene under the currently activated Material Group node, or modifies a Box if Box 'label' already exists.step({{ArgTypeReal}} x)
====cylinderEXAMPLE: ''step({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} height1.0)====''
''ExampleDESCRIPTION:cylinder("cylinder_1",Computes and returns the unit step function: 1 if x>0,0,if x<0,10,100)''.
Description: Draws a Cylinder object in the scene under the currently activated Material Group node, or modifies a Cylinder if Cylinder 'label' already exists.====strip_sweep====
====pyramidSYNTAX: strip_sweep({{ArgTypeString}} labelobject, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} heightwidth)====
EXAMPLE: ''Example:pyramidstrip_sweep("pyramid_1Curve_1",0,0,0,10,10,1005)''
DescriptionDESCRIPTION: Draws Creates a Pyramid object in the scene under the currently activated Material Group node, or modifies strip version of a Pyramid if Pyramid 'label' already existsgiven curve object.
====sphere({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle)subtract====
''ExampleSYNTAX:spheresubtract("sphere"{{ArgTypeString}} label,0{{ArgTypeString}} object_1,0,0,10,0,180{{ArgTypeString}} object_2)''
DescriptionEXAMPLE: Draws a Sphere object in the scene under the currently activated Material Group node, or modifies a Sphere if Sphere 'label' already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the spheresubtract("Subtract_Object","Rect_Strip1","Rect_Strip2")''s theta axis.
====rect_strip({{ArgTypeString}} DESCRIPTION: Creates a Boolean object named 'label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} width)====' by subtracting object_2 from object_1. An error will be thrown if a Boolean object named 'label' already exists.
''Example:rect_strip("my_rectangle",0,0,0,"x",y)''====superquad====
DescriptionSYNTAX: Draws a Rect Strip object in the scene under the currently activated Material Group node, or modifies a Rect Strip if Rect Strip 'superquad({{ArgTypeString}} label' already exists., {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} order)
====circ_stripEXAMPLE: ''superquad({{ArgTypeString}} label"SuperQuad_1", {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z00, {{ArgTypeAny}} inner_radius50, {{ArgTypeAny}} outer_radius20,4)====''
''ExampleDESCRIPTION:circ_strip("cs_1"Draws a super-quadratic curve object in the project workspace under the currently activated material group node,0,0,0,0,100)or modifies the super-quadratic curve named 'label'if it already exists. If order = 2, the curve reduces to an ellipse. Higher order makes the round edges sharper. An infinite order reduces the curve to a rectangle.
Description: Draws a Circular Strip object in the scene under the currently activated Material Group node, or modifies a Circular Strip if Circular Strip 'label' already exists.====taper_strip====
====poly_stripSYNTAX: taper_strip({{ArgTypeString}} label, {{ArgType| 3x1 Python tupleArgTypeAny}} p0x0, {{ArgType| 3x1 Python tupleArgTypeAny}} p1y0, ... {{ArgType| 3x1 Python tupleArgTypeAny}} pnz0, {{ArgTypeAny}} base_width, {{ArgTypeAny}} top_width, {{ArgTypeAny}} length, {{ArgTypeAny}} is_expo)====
EXAMPLE: ''Example:poly_striptaper_strip("ps_1ts_1",(0,0,0),(150,0100,0)80,(1,0,0))''
DescriptionDESCRIPTION: Creates or modifies Draws a PolyStrip taper strip object in the scene. Each point is represented with a Python tuple type. The poly_strip function is project workspace under the currently activated material group node, or modifies the taper strip object named 'self-closinglabel' -- there if it already exists. If the Boolean parameters "is_expo" is no need to supply the first point again at the end of the point list1, an exponential taper will be drawn.
====nurbs_strip({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn)terrain_group====
''ExampleSYNTAX:nurbs_stripterrain_group("ns_1"{{ArgTypeString}} label,(0{{ArgTypeAny}} eps,0,0),(1,0,0),(1,0,0){{ArgTypeAny}} sigma)''
DescriptionEXAMPLE: Creates or modifies a NURBS Strip object in the scene''terrain_group("Terrain_1",5. Each point is represented with a Python tuple type0,0. The nurbs_strip function is 0001)'self-closing' -- there is no need to supply the first point again at the end of the point list.
====line({{ArgTypeString}} DESCRIPTION: Creates an terrain surface group in [[EM.Terrano]]. If the terrain surface group 'label' already exists, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length)====the group is activated.
''Example:line("my_line",0,0,0,100)''====thinwire_group====
DescriptionSYNTAX: Draws a Line object in the scene under the currently activated Material Group node, or modifies a Line if Line 'thinwire_group({{ArgTypeString}} label' already exists., {{ArgTypeAny}} radius)
====line_rotatedEXAMPLE: ''thinwire_group({{ArgTypeString}} label"Thinwire_1", {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z, {{ArgTypeAny}} length4)====''
DESCRIPTION: Creates a Thinwire material group in the current module. If the thin wire group 'label'Example:line_rotated("line_1"already exists,0,0,0,0,90,0,100)''the group is activated.
Description: Draws a rotated Line object in the scene under the currently activated Material Group node. Unlike most other CAD functions, if Line 'label' already exists in the scene,an error will be thrown.====torus====
====circleSYNTAX: torus({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radiusradius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])====
EXAMPLE: ''Example:circletorus("pyramid_1Torus_1",0,0,0,10,1050,10020)''
DescriptionDESCRIPTION: Draws a circular curve an torus object in the scene project workspace under the currently activated Material Group material group node, or modifies a Circle object if Circle the torus named 'label' if it already exists. The parameters arguments start_angle and end_angle are in degreesand specify a sweep about the torus's azimuth axis.
====helix({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} nturns, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer)translate_by====
''ExampleSYNTAX:helixtranslate_by("Helix_1"{{ArgTypeString}} object,0 {{ArgTypeReal}} x_dist,0{{ArgTypeReal}} y_dist,0,5,15,50{{ArgTypeReal}} z_dist)''
DescriptionEXAMPLE: Draws a helical curve in the scene under the currently activated Material Group node, or modifies a Helix if Helix 'label' already exists. radius_inner specifies the helix's radius at the beginning of the helixtranslate_by("MyObj", and radius_outer specifies the radius at the end of the helix.10,10,x)''
====poly_line({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, DESCRIPTION: Translates an object by the specified distances in each direction... {{ArgType| 3x1 Python tuple}} pn)====
''Example:poly_line("pl_1",(0,0,0),(1,0,0),(1,0,0))''====translate_to====
DescriptionSYNTAX: Creates or modifies a PolyLine translate_to({{ArgTypeString}} object in the scene. Each point is represented with a Python tuple type. The poly_line is closed if p0 is specified again as pn, otherwise {{ArgTypeReal}} x_dest, {{ArgTypeReal}} y_dest, it is open.{{ArgTypeReal}} z_dest)
====nurbs_curveEXAMPLE: ''translate_to({{ArgTypeString}} label"MyObj", {{ArgType| 3x1 Python tuple}} p020, {{ArgType| 3x1 Python tuple}} p120, ... {{ArgType| 3x1 Python tuple}} pnx2)====''
''ExampleDESCRIPTION:nurbs_curve("nc_1",(0,0,0),(1,0,0),(1,0,0))''Translates an object to the specified destination.
Description: Creates or modifies a NURBS Curve object in the scene. Each point is represented with a Python tuple type. The curve is closed if p0 is specified again as pn, otherwise, it is open.====transmitter_set====
== EM.Cube's Python Functions for Object Transformation ==SYNTAX: transmitter_set({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)
====subtractEXAMPLE: ''transmitter_set({{ArgTypeString}} label"TX_1", {{ArgTypeString}} object_1"PT_1", {{ArgTypeString}} object_2"DPL_STD.RAD",0,90,0)====''
DESCRIPTION: Creates a transmitter set in [[EM.Terrano]]. If the transmitter set 'label'Example:subtract("Subtract_Object"already exists,"Rect_Strip1","Rect_Strip2")''its properties are modified.
Description: Creates a Boolean object named 'label' by subtracting object_2 from object_1. An error will be thrown if a Boolean object named 'label' already exists.====tri====
====unionSYNTAX: tri({{ArgTypeStringArgTypeReal}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2x)====
EXAMPLE: ''Example:uniontri("Union_Object","Rect_Strip1","Rect_Strip2"0.1)''
DescriptionDESCRIPTION: Creates a Boolean object named 'label' by unioning object_1 Computes and object_2. An error will be thrown returns the triangular window function: 1-|x| if a Boolean object named 'label' already existsx<1, 0 elsewhere.
====intersect({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)tri_wave====
''ExampleSYNTAX:intersecttri_wave("Intersection_Object","Rect_Strip1","Rect_Strip2"{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a Boolean object named 'label' by intersecting object_1 and object_2tri_wave(0. An error will be thrown if a Boolean object named 5)'label' already exists.
DESCRIPTION: Computes and returns the periodic triangular wave function of period T ====array({{ArgTypeString}} label2, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing)===oscillating between two values +1 and -1 and having a value of +1 at x =0.
''Example:array("Array_1","Rect_Strip_1",4,4,1,"spacing","spacing",0)''====triangle_strip====
DescriptionSYNTAX: Create or modify an Array object.triangle_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAny}} angle)
====translate_byEXAMPLE: ''triangle_strip({{ArgTypeString}} label"ts_1", {{ArgTypeReal}} x_dist0, {{ArgTypeReal}} y_dist0, {{ArgTypeReal}} z_dist0,50,100,90)====''
''ExampleDESCRIPTION:translate_by("MyObj",10,10Draws a triangle strip object in the project workspace under the currently activated material group node,x)or modifies the triangle strip object named 'label'if it already exists.
Description: Translates an object by the specified distances in each direction.====union====
====translate_toSYNTAX: union({{ArgTypeString}} label, {{ArgTypeRealArgTypeString}} x_destobject_1, {{ArgTypeReal}} y_dest, {{ArgTypeRealArgTypeString}} z_destobject_2)====
EXAMPLE: ''Example:translate_tounion("MyObjUnion_Object",20"Rect_Strip1",20,x2"Rect_Strip2")''
DescriptionDESCRIPTION: Creates a Boolean object named 'label' by unioning object_1 and object_2. Translates an An error will be thrown if a Boolean object to the specified destinationnamed 'label' already exists.
====rotate({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle)virtual_group====
''ExampleSYNTAX:rotatevirtual_group("pyramid_1",0,0,0,10,10,100{{ArgTypeString}} label)''
DescriptionEXAMPLE: Draws a circular curve object in the scene under the currently activated Material Group node, or modifies a Circle object if Circle 'label' already exists. The parameters start_angle and end_angle are in degrees.virtual_group("VIR_1")''
====extrude({{ArgTypeString}} DESCRIPTION: Creates a virtual object group in [[EM.Terrano]]. If the virtual group 'label' already exists, {{ArgTypeString}} object, {{ArgTypeAny}} height)====the group is activated.
''Example:extrude("Extrude_Object","Rect_Strip1",50)''====voltage_integral====
DescriptionSYNTAX: Creates or modifies an Extrusion object from CAD object 'object'. If modifying an existing extrusionvoltage_integral({{ArgTypeString}} label, 'object' is ignored{{ArgTypeAny}} x1, and the pre-existing primitive is used. extrude(...) can only extrude objects that have a single face{{ArgTypeAny}} y1, and will extrude in the direction of the face's normal.{{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)
====explodeEXAMPLE: ''voltage_integral({{ArgTypeString}} object"FI_1",0,0,-10,0,0,10)====''
''ExampleDESCRIPTION:explode("MyArray")Creates a voltage integral observable in [[EM.Ferma]]. If the observable 'label'already exists, its properties are modified.
Description: Performs an explode operation on a CAD object named 'object'.====volume_current_group====
====revolveSYNTAX: volume_current_group({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uYJx, {{ArgTypeAny}} uZJy, {{ArgTypeAny}} rot_angleJz)====
EXAMPLE: ''Example:revolvevolume_current_group("Rev1Magnet_1","Line_1",0,0,0,0,0,11e6)''
DescriptionDESCRIPTION: Creates or modifies a Revolution object called 'label', with a primitive object named 'object'volume current source group in [[EM.Ferma]]. If modifying an existing Revolution object, the volume current group 'objectlabel' is ignoredalready exists, and the pre-existing primitive object group is used. (x0,y0,z0) specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. rot_angle is in degreesactivated.
== EM.Cube Python Functions for Material Group Creation ==wave_port====
====pec_groupSYNTAX: wave_port({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])====
EXAMPLE: ''Example:pec_groupwave_port("PEC_1WP_1","Rect_1",0,0)''
DescriptionDESCRIPTION: Creates a PEC material group scattering wave port source in the current module[[EM.Picasso]] or [[EM.Libera]]. If a PEC group the wave port 'label' already exists, the group is activatedits properties are modified.
====pmc_group({{ArgTypeString}} label)waveguide_design====
''ExampleSYNTAX:pmc_groupwaveguide_design("PMC_1"{{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)''
DescriptionEXAMPLE: Creates a PMC material group in the current module. If a PMC group 'label' already exists, the group is activatedwaveguide_design(1.0,2e9)''
====dielectric_groupDESCRIPTION: Computes and returns the minimum larger dimension ({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rhoin meters)====of the cross section of a hollow rectangular waveguide above cutoff with a material filling of relative permittivity er at an operating frequency of freq_hertz.
''Example:dielectric_group("Dielectric_1","my_eps",0,1,0)''====waveguide_src====
DescriptionSYNTAX: Creates a Dielectric material group in the current module with the specified material properties. If a Dielectric group 'waveguide_src({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeAny}} box_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
====thinwire_groupEXAMPLE: ''waveguide_src({{ArgTypeString}} label"WG_1", {{ArgTypeAny}} radius"Box_1",50,0)====''
DESCRIPTION: Creates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label'Example:thinwire_group("Thinwire_1"already exists,4)''its properties are modified.
Description: Creates a Thinwire material group in the current module. If a Thinwire group 'label' already exists, the group is activated.====wire_current_group====
====base_point_groupSYNTAX: wire_current_group({{ArgTypeString}} label, {{ArgTypeAny}} current, {{ArgTypeAny}} wire_radius)====
EXAMPLE: ''Example:base_point_setwire_current_group("BP_Set_1Magnet_1",1,0.5)''
DescriptionDESCRIPTION: Creates a Base Point Set wire current source group in [[EM.TerranoFerma]]. If a Base Point Set the wire current group 'label' already exists, the group is activated.
====color_group({{ArgTypeString}} label)wire_gap_src====
''ExampleSYNTAX:color_groupwire_gap_src("Color_1"{{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])''
DescriptionEXAMPLE: Creates a Color group in [[CubeCAD]] module. If a Color group 'label' already existswire_gap_src("WIG_1", the group is activated."Line_1",50,0)''
====penetrable_group({{ArgTypeString}} DESCRIPTION: Creates a wire gap circuit source in [[EM.Libera]]. If the wire gap source 'label' already exists, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thickness)====its properties are modified.
''Example:penetrable_group("Impenet_1",2.2,.0001, 1)''====zoom_extents====
DescriptionSYNTAX: Creates a Penetrable material group in [[EM.Terrano]]. If a Penetrable group 'label' already exists, the group is activated.zoom_extents()
====impenetrable_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)====DESCRIPTION: Zooms to fit the extents of the physical structure into the screen.
''Example:impenetrable_group("Impenet_1",2.2,.0001)''<br />
Description: Creates a Impenetrable material group in [[EM.Terrano]]. If an Impenetrable group 'label' already exists, the group is activated.<hr>
[[Image:Top_icon.png|30px]] '''[[#Standard_Python_Operators | Back to the Top of the Page]]'''
<p> </p>[[Image:Back_icon.png|40px30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''