Changes

EM.Illumina

20 bytes removed, 16:49, 20 July 2015
The physical optics method assumes an unbounded, open-boundary computational domain, wherein the physical structure is placed against a free space background medium. As such, only finite-extent surfaces are discretized. [[EM.Cube]]'s [[PO Module]] uses a triangular surface mesh to discretize all the surface and [[Solid Objects|solid objects]] in the project workspace. As mentioned earlier, [[Curve Objects|curve objects]] (or wires) are not allowed in [[PO Module]]. In the case of solids, only the surface of the object or its faces are discretized, as the interior volume is not taken into account in a PO analysis. In general, triangular cells are placed on the exterior surface of [[Solid Objects|solid objects]]. In contrast, [[Surface Objects|surface objects]] are assumed to be double-sided by default. The means that the PO mesh of a surface object indeed consists of coinciding double cells, one representing the upper or positive side and the other representing the lower or negative side. This may lead to a very large number of cells. [[EM.Cube]]'s PO mesh has some more settings that allow you to treat all mesh cells as double-sided or all single-sided. This can be done in the Mesh Settings dialog by checking the boxes labeled '''All Double-Sided Cells''' and '''All Single-Sided Cells'''. This is useful when your project workspace contains well-organized and well-oriented [[Surface Objects|surface objects]] only. In the single-sided case, it is very important that all the normals to the cells point towards the source. Otherwise, the [[Surface Objects|surface objects]] will be assumed to lie in the shadow region and no currents will be computed on them. By checking the box labeled '''Reverse Normal''', you instruct [[EM.Cube]] to reverse the direction of the normal vectors at the surface of all the cells.
 
[[File:PO24.png]]
 
Figure: Forcing mesh cells to be single-sided in a PO simulation.
'''As a general rule, [[EM.Cube]]'s PO mesh generator merges all the objects that belong to the same surface group using the Boolean Union operation.''' As a result, overlapping objects are transformed into a single consolidated object. This is particularly important for generating a contiguous and consistent mesh in the transition and junction areas between connected objects. In general, objects of the same CAD category can be "unioned". For example, [[Surface Objects|surface objects]] can be merged together, and so can [[Solid Objects|solid objects]]. However, a surface object and a solid in general do not merge. Objects that belong to different groups on the Navigation Tree are not merged during mesh generation even if they are all of PEC type and physically overlap.
[[File:PO25.png|400px]] [[File:PO26.png|400px]]
 
Figure: Geometry and PO mesh of an overlapping sphere and ellipsoid.
=== Mesh Density & Local Mesh Control ===
You can lock the mesh density of any surface group to any desired value different than the global mesh density. To do so, open the property dialog of a surface group by right clicking on its name in the Navigation Tree and select '''Properties...''' from the contextual menu. At the bottom of the dialog, check the box labeled '''Lock Mesh'''. This will enable the '''Density '''box, where you can set a desired value. The default value is equal to the global mesh density.
 
<table>
<tr>
<td> [[Image:PO5.png|thumb|450px|Two overlapping PEC spheres.]] </td>
<td> [[Image:Po6.png|thumb|450px|Trinagular surface mesh of the two spheres.]] </td>
</tr>
</table>
== Excitation Sources ==
28,333
edits