Changes

EM.Tempo

20 bytes added, 17:00, 15 June 2018
/* Using CPML to Model Structures of Infinite Extents */
=== Using CPML to Model Structures of Infinite Extents ===
You can use [[EM.Tempo]] to model planar structures of infinite extents. A planar substrate usually consists of one or more dielectric layers, possibly with a PEC ground plane at its bottom. To model a laterally infinite dielectric substrate, you must assign a PML boundary condition to the four lateral sides of the domain box and set the lateral domain offset values along the ±X and ±Y directions all equal to zero. If the planar structure ends in an infinite dielectric half-space from the bottom, you must assign a PML boundary condition to the bottom side of the domain box and set the -Z offset equal to zero. This leaves only the +Z offset with a nonzero value.
When a domain boundary wall is designated as CPML and its has a zero domain offset, meaning it touches a material block, the CPML cells outside the domain wall are reflected back inside the computational domain. In other words, the effective number of CPML layers will be twice the one specified in the CPML Settings dialog. This will effectively extend the material block infinitely beyond the boundary wall and will create an open boundary effect in the specified direction. It goes without saying that only "substrate" objects are supposed to touch the boundary walls in such a scenario. Because of the rolled-back CPML cells inside the domain, it is very important to make sure that other finite-sized parts and objects stay clear from the domain walls as well as from the invisible "interior" CPML cells.
{{Note|The current release of [[EM.Tempo]] does not support full-anisotropic or dispersive or gyrotropic layers of laterally infinite extents. In other words, your anisotropic or dispersive or gyrotropic material objects must not touch the CPML domain boundaries.}}
<table>
28,333
edits