EM.Tempo allows you to simulate doubly periodic structures with periodicities along the X and Y directions. Many interesting structures such as frequency selective surfaces (FSS), electromagnetic band-gap (EBG) structures and metamaterial structures can be modeled using periodic geometries. In the case of an infinitely extended periodic structure, it is sufficient to analyze only a unit cell. In the FDTD method, this is accomplished by applying periodic boundary conditions (PBC) at the side walls of the computational domain.
Click here to learn more about the theory of '''[[Time Domain Simulation of Periodic Structures]]'''.
[[Image:FDTD134.png|thumb|320px|EM.Tempo's Periodicity Settings dialog]]
In [[EM.Tempo]], a periodic structure can be excited using various source types. Exciting the unit cell structure using a lumped source, a waveguide source, an ideal source or a distributed source, you can model an infinite periodic antenna array. For most practical antenna types, you will excite your periodic structure with a lumped source or waveguide source. In this case, you can define a port for the lumped source or waveguide source and calculate the S<sub>11</sub> parameter or input impedance of the periodic antenna array. You can also compute the near-field and far-field data.
Click here to learn more about '''[[Modeling Infinite Phased Arrays]]'''.
[[Image:FDTD139.png|thumb|320px|Placing a field probe above a periodic structure excited by an obliquely incident plane wave source.]]
One of the pitfalls of the direct spectral FDTD method is the possibility of horizontal resonances, which may lead to indefinite oscillation or even divergence of field values during the time marching loop. This happens in the case of oblique plane wave incidence when θ > 0°. [[EM.Tempo]]'s FDTD engine automatically detects such cases and avoids those resonances by shifting the modulation frequency of the modulated Gaussian pulse waveform away from the resonant frequency. However, in some cases, the size of oscillations may still remain large after a large number of time steps. Occasionally, a late-time diverging behavior may appear. To avoid situations like these, it is highly recommended that you place a time-domain field probe above your structure and monitor the temporal field behavior during the time marching loop as shown in the figure below.
Click here to learn more about '''[[Reflection & Transmission Characteristics of Periodic Structures]]'''.
<p> </p>