Changes

Jump to: navigation, search

EM.Tempo

224 bytes added, 20:13, 8 June 2013
/* Dispersive Materials */
<!--[[Image:FDTD18(2).png]]-->
where &epsilon;<sub>&infin;</sub> is the value of the permittivity at infinite frequency, &tau;<sub>p</sub> is the relaxation time corresponding to the p''th'' pole having the unit of seconds, and &epsilon;<sub>sp</sub> is the value of the static permittivity (at DC) corresponding to the p''th'' pole. &Delta;&epsilon;<sub>p</submath> \Delta \varepsilon_p = &epsilon;<sub>\varepsilon_{sp</sub> } - &epsilon;<sub>&infin;\varepsilon_{\infty}</submath> represents the change in permittivity due to the p''th'' pole.
Unmagnetized plasmas are typically modeled as Drude materials. The complex permittivity of a Drude material with N poles is given by:
:<math> \varepsilon(\omega) = \varepsilon_{\infty} - \sum_{p=1}^N \dfrac{{\omega_p}^2}{\omega^2 - j\omega \nu_p} </math>
<!--[[Image:FDTD19(1).png]]-->
The complex permittivity of a Lorentz material with N poles is given by:
:<math> \varepsilon(\omega) = \varepsilon_{\infty} - \sum_{p=1}^N \dfrac{\Delta \varepsilon_p {\omega_p}^2}{\omega^2 - 2j\omega \delta_p - {\omega_p}^2}, \quad \Delta \varepsilon_p = \varepsilon_{sp} - \varepsilon_{\infty} </math><!--[[Image:FDTD20.png]]-->
where &omega;<sub>p</sub> and delta &delta;<sub>p</sub> are the angular resonant frequency and angular damping frequency corresponding to the p''th'' pole, respectively, and both are expressed in rad/s. Similar to a Debye material, &Delta;&epsilon;<sub>p</submath> \Delta \varepsilon_p = &epsilon;<sub>\varepsilon_{sp</sub> } - &epsilon;<sub>&infin;\varepsilon_{\infty}</submath> represents the change in permittivity due to the p''th'' pole.
{| style="width: 600px" border="1" cellspacing="1" cellpadding="1"