</tr>
</table>
Â
== The Significance of Mesh Resolution ==
The objects of your physical structure are discretized based on a specified mesh density. The default mesh densities of [[EM.Tempo]], [[EM.Picasso]], [[EM.Libera]] and [[EM.Illumina]] are expressed as the number of cells per effective wavelength. Therefore, the resolution of the default mesh in these modules are frequency-dependent. You can also define the mesh resolution using a fixed cell size or fixed edge length specified in project units. The mesh density of [[EM.Terrano]] is always expressed in terms of cell edge length. The mesh resolution of [[EM.Ferma]] is always specified as the fixed cell size. All of [[EM.Cube]]'s computational modules have default mesh settings that usually work well for most simulations.
The accuracy of the numerical solution of an electromagnet problem depends greatly on the quality and resolution of the generated mesh. As a rule of thumb, a mesh density of about 10-30 cells per effective wavelength usually yields satisfactory results. Yet, for structures with lots of fine geometrical details or for highly resonant structures, higher mesh densities may be required. Also, the particular simulation data that you seek in a project also influence your choice of mesh resolution. For example, far field characteristics like radiation patterns are less sensitive to the mesh density than the near-field distributions on a structure with a highly irregular shape and a rugged boundary.