Changes

SBR Method

2,114 bytes removed, 20:47, 6 August 2015
== Free-Space Wave Propagation ==
 
[[Image:los.png|thumb|600px|A Line-of-Sight (LOS) Propagation Scenario.]]
In a free-space line-of-sight (LOS) communication system, the signal propagates directly from the transmitter to the receiver without encountering any obstacles (scatterers). Electromagnetic waves propagate in the form of spherical waves with a functional dependence of e<sup>j(&omega;</sup><sup>t-k<sub>0</sub>R)</sup>/R, where R is the distance between the transmitter and receiver, <math>\omega = 2\pi f</math>, f is the signal frequency, <math>k_0 = \frac{\omega}{c} = \frac{2\pi}{\lambda}</math>, c is the speed of light, and &lambda;<sub>0</sub> is the free-space wavelength at the operational frequency. By the time the signal arrives at the location of the receiver, it undergoes two changes. It is attenuated and its power drops by a factor of 1/R<sup>2</sup>, and additionally, it experiences a phase shift of <math>\frac{2\pi R}{\lambda_0}</math>, which is equivalent to a time delay of R/c. The signal attenuation from the transmitter to the receiver is usually quantified by '''Path Loss''' defined as the ratio of the received signal power (P<sub>R</sub>) to the transmitted signal power (P<sub>T</sub>). Assuming isotropic transmitting and receiving radiators (i.e. radiating uniformly in all directions), the Path Loss in a free-space line-of-sight communication system is given by Friis’ formula:
 
:<math> \frac{P_R}{P_T} = \left( \frac{\lambda_0}{4\pi R} \right)^2 </math>
The above formula assumes that the receiving antenna is polarization-matched. Normally, there is a polarization mismatch between the transmitting and receiving antennas. In the case of directional transmitting and receiving antennas, Friis’ formula takes the following form:
 
:<math> \frac{P_R}{P_T} = G_T G_R \left( \frac{\lambda_0}{4\pi R} \right)^2 \left| \mathbf{ \hat{u}_T \cdot \hat{u}_R } \right|^2 </math>
where '''u<sub>T</sub>''' and '''u<sub>R</sub>''' are the unit polarization vectors of the transmitting and receiving antennas, and G<sub>T</sub> and G<sub>R</sub> are their gains, respectively.
 
== Basic Wave Interaction Mechanisms ==
28,333
edits