Changes

Jump to: navigation, search

EM.Picasso

12 bytes added, 15:47, 10 June 2013
/* Modeling Periodic Structures Using Adaptive Frequency Sweeps */
You learned earlier how to use EM.Cube's powerful, adaptive frequency sweep utility to study the frequency response of a planar structure. Adaptive frequency sweep uses rational function interpolation to generate smooth curves of the scattering parameters with a relatively small number of full-wave simulation runs in a progressive manner. Therefore, you need a port definition in your planar structure to be able to run an adaptive frequency sweep. This is clear in the case of an infinite periodic phased array, where your periodic unit cell structure must be excited using either a gap source or a probe source. You run an adaptive frequency sweep of an infinite periodic phased array in exactly the same way to do for regular, aperiodic, planar structures.
EM.Cube's Planar Modules also allows you to run an adaptive frequency sweep of periodic surfaces excited by a plane wave source. In this case, the planar MoM engine calculates the reflection and transmission coefficients of the periodic surface. Note that you can conceptually consider a periodic surface as a two-port network, where Port 1 is the top half-space and Port 2 is the bottom half-space. In that case, the reflection coefficient R is equivalent to S<sub>11</sub> parameter, while the transmission coefficient T is equivalent to S<sub>21</sub> parameter. This is, of course, the case when the periodic surface is illuminated by the plane wave source from the top half-space, corresponding to 90°&lt; ? &theta; = 180°. You can also illuminate the periodic surface by the plane wave source from the bottom half-space, corresponding to 0° = ? &theta; &lt; 90°. In this case, the reflection coefficient R and transmission coefficient T are equivalent to S<sub>22</sub> and S<sub>12</sub> parameters, respectively. Having these interpretations in mind, EM.Cube enables the &quot;'''Adaptive Frequency Sweep'''&quot; option of the '''Frequency Settings Dialog''' when your planar structure has a periodic domain together with a plane wave source.
=== Modeling Finite-Sized Periodic Arrays Using NCCBF Technique ===