Changes

EM.Picasso

2,853 bytes removed, 15:45, 10 June 2013
/* Standard vs. Custom Output */
At the end of a planar MoM simulation, a number of computed quantities are designated as "Standard Output" parameters and can be used for various post-processing data operations. For example, you can define design objectives based on them, which you need for optimization. The table below gives a list of all the currently available standard output parameters in EM.Cube's [[Planar Module]]:
<table><tbody><tr {| class="oddwikitable"><td align!scope="leftcol">| Standard Output Name / Syntax</td><td align!scope="leftcol">| Description</td></tr>|-<tr class="even"><td align="left">| SijM</td><td align="left">| Magnitude of (i,j)-th Scattering Parameter</td></tr>|-<tr class="odd"><td align="left">| SijP</td><td align="left">| Phase of (i,j)-th Scattering Parameter (in radians)</td></tr>|-<tr class="even"><td align="left">| SijR</td><td align="left">| Real Part of (i,j)-th Scattering Parameter</td></tr>|-<tr class="odd"><td align="left">| SijI</td><td align="left">| Imaginary Part of (i,j)-th Scattering Parameter</td></tr>|-<tr class="even"><td align="left">| ZijM</td><td align="left">| Magnitude of (i,j)-th Impedance Parameter</td></tr>|-<tr class="odd"><td align="left">| ZijP</td><td align="left">| Phase of (i,j)-th Impedance Parameter (in radians)</td></tr>|-<tr class="even"><td align="left">| ZijR</td><td align="left">| Real Part of (i,j)-th Impedance Parameter</td></tr>|-<tr class="odd"><td align="left">| ZijI</td><td align="left">| Imaginary Part of (i,j)-th Impedance Parameter</td></tr>|-<tr class="even"><td align="left">| YijM</td><td align="left">| Magnitude of (i,j)-th Admittance Parameter</td></tr>|-<tr class="odd"><td align="left">| YijP</td><td align="left">| Phase of (i,j)-th Admittance Parameter (in radians)</td></tr>|-<tr class="even"><td align="left">| YijR</td><td align="left">| Real Part of (i,j)-th Admittance Parameter</td></tr>|-<tr class="odd"><td align="left">| YijI</td><td align="left">| Imaginary Part of (i,j)-th Admittance Parameter</td></tr>|-<tr class="even"><td align="left">| VSWR</td><td align="left">| Voltage Standing Wave Ratio</td></tr>|-<tr class="odd"><td align="left">| D0</td><td align="left">| Directivity</td></tr>|-<tr class="even"><td align="left">| PRAD</td><td align="left">| Total Radiated Power</td></tr>|-<tr class="odd"><td align="left">| THM</td><td align="left">| Main Beam Theta</td></tr>|-<tr class="even"><td align="left">| PHM</td><td align="left">| Main Beam Phi</td></tr>|-<tr class="odd"><td align="left">| DGU</td><td align="left">| Directive Gain along User Defined Direction</td></tr>|-<tr class="even"><td align="left">| ARU</td><td align="left">| Axial Ratio along User Defined Direction</td></tr>|-<tr class="odd"><td align="left">| FBR</td><td align="left">| Front-to-Back Ratio</td></tr>|-<tr class="even"><td align="left">| HPBWXY</td><td align="left">| Half Power Beam Width in XY Plane</td></tr>|-<tr class="odd"><td align="left">| HPBWYZ</td><td align="left">| Half Power Beam Width in YZ Plane</td></tr>|-<tr class="even"><td align="left">| HPBWZX</td><td align="left">| Half Power Beam Width in ZX Plane</td></tr>|-<tr class="odd"><td align="left">| HPBWU</td><td align="left">| Half Power Beam Width in User Defined Plane</td></tr>|-<tr class="even"><td align="left">| SLLXY</td><td align="left">| Maximum Side Lobe Level in XY Plane</td></tr>|-<tr class="odd"><td align="left">| SLLYZ</td><td align="left">| Maximum Side Lobe Level in YZ Plane</td></tr>|-<tr class="even"><td align="left">| SLLZX</td><td align="left">| Maximum Side Lobe Level in ZX Plane</td></tr>|-<tr class="odd"><td align="left">| SLLU</td><td align="left">| Maximum Side Lobe Level in User Defined Plane</td></tr>|-<tr class="even"><td align="left">| FNBXY</td><td align="left">| First Null Beam Width in XY Plane</td></tr>|-<tr class="odd"><td align="left">| FNBYZ</td><td align="left">| First Null Beam Width in YZ Plane</td></tr>|-<tr class="even"><td align="left">| FNBZX</td><td align="left">| First Null Beam Width in ZX Plane</td></tr>|-<tr class="odd"><td align="left">| FNBU</td><td align="left">| First Null Beam Width in User Defined Plane</td></tr>|-<tr class="even"><td align="left">| FNLXY</td><td align="left">| First Null Level in XY Plane</td></tr>|-<tr class="odd"><td align="left">| FNLYZ</td><td align="left">| First Null Level in YZ Plane</td></tr>|-<tr class="even"><td align="left">| FNLZX</td><td align="left">| First Null Level in ZX Plane</td></tr>|-<tr class="odd"><td align="left">| FNLU</td><td align="left">| First Null Level in User Defined Plane</td></tr>|-<tr class="even"><td align="left">| BRCS</td><td align="left">| Back-Scatter RCS</td></tr>|-<tr class="odd"><td align="left">| FRCS</td><td align="left">| Forward-Scatter RCS along User Defined Incident Direction</td></tr>|-<tr class="even"><td align="left">| MRCS</td><td align="left">| Maximum Bi-static RCS</td></tr>|-<tr class="odd"><td align="left">| RCM</td><td align="left">| Magnitude of Reflection Coefficient</td></tr>|-<tr class="even"><td align="left">| RCI</td><td align="left">| Phase of Reflection Coefficient (in radians)</td></tr>|-<tr class="odd"><td align="left">| RCR</td><td align="left">| Real Part of Reflection Coefficient</td></tr>|-<tr class="even"><td align="left">| RCI</td><td align="left">| Imaginary Part of Reflection Coefficient</td></tr>|-<tr class="odd"><td align="left">| TCM</td><td align="left">| Magnitude of Transmission Coefficient</td></tr>|-<tr class="even"><td align="left">| TCP</td><td align="left">| Phase of Transmission Coefficient (in radians)</td></tr>|-<tr class="odd"><td align="left">| TCR</td><td align="left">| Real Part of Transmission Coefficient</td></tr>|-<tr class="even"><td align="left">| TCI</td><td align="left">| Imaginary Part of Transmission Coefficient</td></tr></tbody></table>|}
In the table above, SijM, etc. means the scattering parameter observed at port i due to a source excited at port j. Similar definitions apply to all the S, Z and Y parameters. If your planar structure has N ports, there will be a total of N<sup>2</sup> scattering parameters, a total of N<sup>2</sup> impedance parameters, and a total of N<sup>2</sup> admittance parameters. Additionally, there are four standard output parameters associated with each of the individual S/Z/Y parameters: magnitude, phase (in radians), real part and imaginary part. The same is true for the reflection and transmission coefficients of a periodic planar structure excited by a plane wave source. Each coefficient has four associated standard output parameters. These parameters, of course, are available only if your planar structure has a periodic domain and is also excited by a plane wave source incident at the specified ? &theta; and f &phi; angles.
All the radiation- and scattering-related standard outputs are available only if you have defined a radiation pattern far field observable or an RCS far field observable, respectively. The standard output parameters DGU and ARU are the directive gain and axial ratio calculated at the certain user defined direction with spherical observation angles (?&theta;, f&phi;). These angles are specified in degrees as '''User Defined Azimuth &amp; Elevation''' in the &quot;Output Settings&quot; section of the '''Radiation Pattern Dialog'''. The standard output parameters HPBWU, SLLU, FNBU and FNLU are determined at a user defined f-plane cut. This azimuth angle is specified in degrees as '''Non-Principal Phi Plane''' in the &quot;Output Settings&quot; section of the '''Radiation Pattern Dialog''', and its default value is 45°. The standard output parameters BRCS and MRCS are the total back-scatter RCS and the maximum total RCS of your planar structure when it is excited by an incident plane wave source at the specified ?&theta;<sub>s</sub> and f&phi;<sub>s</sub> source angles. FRCS, on the other hand, is the total forward-scatter RCS measured at the predetermined ?&theta;<sub>o</sub> and f&phi;<sub>o</sub> observation angles. These angles are specified in degrees as '''User Defined Azimuth &amp; Elevation''' in the &quot;Output Settings&quot; section of the '''Radar Cross Section Dialog'''. The default values of the user defined azimuth and elevation are both zero corresponding to the zenith.
If you are interested in calculating certain quantities at the end of a simulation, which you do not find among EM.Cube's standard output data, you can define your own custom output. EM.Cube allows you to define new custom output as any mathematical expression that involves the available standard output parameters, numbers, variables and all of EM.Cube's mathematical functions. For a list of legitimate mathematical functions, click the '''Functions [[File:functions_icon.png]]'''button of the '''Simulate Toolbar''' or select '''Simulate &gt; Functions...'''from the menu bar, or use the keyboard shortcut '''Ctrl+I''' to open the Function Dialog. Here you can see a list of all the available EM.Cube functions with their syntax and a brief description. To define a custom output, click the '''Custom Output [[File:custom_icon.png]]'''button of the '''Simulate Toolbar''' or select '''Simulate &gt; Custom Output...'''from the menu bar, or use the keyboard shortcut '''Ctrl+K''' to open the Custom Output Dialog. This dialog has a list of all of your custom output parameters. Initially, the list empty. You can define a new custom output by clicking the '''Add''' button of the dialog to open up the '''Add Custom Output Dialog'''. In this dialog, first you have to choose a new label for your new parameter and then define a mathematical expression for it. At the bottom of the dialog you can see a list of all the available standard output parameters, whose number and variety depends on your project's source type as well as the defined project observables. When you close the Add Custom Output dialog, it returns you to the Custom Output dialog, where the parameter list now reflects your newly defined custom output. You can edit an existing parameter by selecting its row in the table and clicking the '''Edit''' button, or you can delete any parameter from the list using the '''Delete''' button.
Administrator
613
edits