Changes

Glossary of EM.Cube's Sources & Devices

3,362 bytes removed, 23:45, 16 February 2021
/* Plane Wave */
<td>
[[Image:Lumped Par_RC.png|thumb|left|480px|The lumped device dialog with the Parallel RC device type selected.]]
</td>
</tr>
</table>
 
== Plane Wave ==
 
ICON: [[File:plane_wave_icon.png]]
 
MODULE: [[EM.Tempo]], [[EM.Illumina]], [[EM.Picasso]], [[EM.Libera]]
 
FUNCTION: Defines a plane wave source with specified incidence angles and polarization
 
TO DEFINE A PLANE WAVE:
 
# Right-click on the '''Plane Waves''' item in the navigation tree.
# Select '''Insert New Source...''' to open up the Plane Wave Dialog.
# By default, a TMz-polarized plane wave source is defined with normal incidence along the negative Z-axis.
# You can change the '''Polarization''' type and incident '''Theta''' and '''Phi''' angles in the spherical coordinate system.
# Click the '''OK''' button of the dialog to return to the project workspace.
 
NOTES, SPECIAL CASES OR EXCEPTIONS: In the case of a free-space background medium, the incident electric and magnetic fields of the plane wave source are given by:
 
:<math> \mathbf{E^{inc}(r)} = E_0 \mathbf{\hat{e}} e^{ -jk_0 \mathbf{\hat{k}\cdot r} } </math>
 
:<math> \mathbf{H^{inc}(r)} = \mathbf{\hat{k} \times \hat{e}} \frac{E_0}{\eta_0} e^{-jk_0 \mathbf{\hat{k} \cdot r} } </math>
 
where <math>\eta_0 = 120\pi</math> is the characteristic impedance of the free space, <math>\mathbf{\hat{k}}</math> is the unit propagation vector of the incident plane wave, and <math>\mathbf{\hat{e}}</math> is the polarization vector corresponding to the electric field of that wave.
 
In [[EM.Picasso]], your plane wave source is placed above a multilayer substrate structure. In that case, the incident plane wave bounces off the layered background structure and part of it also penetrates the substrate layers. The total incident field that is used to calculate the excitation vector is a superposition of the incident, reflected and transmitted plane waves at various regions of your planar structure:
 
:<math> \mathbf{E^{inc}(r)} = E_0 (\mathbf{\hat{e}_1} e^{ -jk_0 \mathbf{\hat{k}_1\cdot r} } + R \mathbf{\hat{e}_2} e^{ -jk_0 \mathbf{\hat{k}_2\cdot r} } ) </math>
 
:<math> \mathbf{H^{inc}(r)} = \frac{E_0}{\eta_0} ( \mathbf{\hat{k}_1 \times \hat{e}_1} e^{-jk_0 \mathbf{\hat{k}_1 \cdot r} } + R \mathbf{\hat{k}_2 \times \hat{e}_2} e^{-jk_0 \mathbf{\hat{k}_2\cdot r} } ) </math>
 
where <math>\mathbf{\hat{k}_1}</math> and <math>\mathbf{\hat{k}_2}</math> are the unit propagation vectors of the incident plane wave and the wave reflected off the topmost substrate layer, respectively, and <math>\mathbf{\hat{e}_1}</math> and <math>\mathbf{\hat{e}_2}</math> are the polarization vectors corresponding to the electric field of those waves. R is the reflection coefficient at the interface between the top half-space and the topmost substrate layer and has different values for the TM and TE polarizations.
 
 
PYTHON COMMAND: planewave(label,theta,phi,polarization)
 
 
PLANE WAVE PARAMETERS
{| class="wikitable"
|-
! scope="col"| Parameter Name
! scope="col"| Value Type
! scope="col"| Units
! scope="col"| Default Value
! scope="col"| Notes
|-
! scope="row" | polarization
| List: TMz, TEz, LCPz, RCPz, Custom Linear
| -
| TMz
| select one of the linear or circular polarization types
|-
! scope="row" | theta
| real numeric
| degrees
| 180
| incident elevation angle
|-
! scope="row" | phi
| real numeric
| degrees
| 0
| incident azimuth angle
|}
 
<table>
<tr>
<td>
[[Image:Tempo L2 Fig4.png|thumb|left|480px|The plane wave source dialog.]]
</td>
</tr>
4,622
edits