:<math> \mathbf{M(r)} = -(1-\alpha)\mathbf{\hat{n}} \times \left\lbrace \begin{align} & \mathbf{ E^{inc}(r) } + jk_0 \iint_{S_M} \left( 1 - \frac{j}{k_0 R} \right) (\mathbf{ \hat{R} \times M(r') }) \frac{e^{-jk_0 R}}{4\pi R} \,ds' \\ & -j k_0 Z_0 \iint_{S_J} \left[ \left( 1 - \frac{j}{k_0 R} - \frac{1}{(k_0 R)^2} \right) \mathbf{J(r')} - \left( 1-\frac{3j}{k_0 R}-\frac{3}{(k_0 R)^2} \right) \mathbf{ (\hat{R} \cdot J(r')) \hat{R} } \right] \frac{e^{-jk_0 R}}{4\pi R} \,ds' \end{align} \right\rbrace </math>
Â
Â
Â
:<math> \mathbf{J(r)} = \mathbf{\hat{n}\times} \begin{bmatrix} 1-R_{||} & 0 \\ 0 & 1-R_{\perp} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{H_{||}^{tot}(r)} \\ \mathbf{H_{\perp}^{tot}(r)} \end{bmatrix} </math>
Â
Â
:<math> \mathbf{M(r)} = -\mathbf{\hat{n}\times} \begin{bmatrix} 1+R_{||} & 0 \\ 0 & 1+R_{\perp} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{E_{||}^{tot}(r)} \\ \mathbf{E_{\perp}^{tot}(r)} \end{bmatrix} </math>
Â
Â
Â
Â
<!--[[File:PO9(1).png]]-->