| <math> P_{ohmic} = \int\int\int_V \sigma \vert \mathbf{E(r)} \vert ^2 dv </math>
| ohmic.DAT
|-
! scope="row"| Resistance
| <math> R = V/I_{cond} = - \int_C \mathbf{E(r)} . \mathbf{dl} / \int\int_S \sigma \mathbf{E(r)} . \mathbf{ds} </math>
| resistance.DAT
|-
! scope="row"| Capacitance
| <math> C = \Phi_E/V = \int\int_{S_o} \epsilon \mathbf{E(r)} . \mathbf{ds} / \int_C \mathbf{E(r)} . \mathbf{dl} </math>
| capacitance.DAT
|-
! scope="row"| Capacitance (Alternative)
| <math> C = 2W_E/V^2 = \2 \int \int \int_V \epsilon \vert \mathbf{E(r)} \vert ^2 dv / \left( \int_C \mathbf{E(r)} . \mathbf{dl} \right)^2</math>
| capacitance.DAT
|-
| <math> M = \Phi_H^{\prime}/I = \int\int_{S^{\prime}} \mu \mathbf{H(r)} . \mathbf{ds} / \oint_{C_o} \mathbf{H(r)} . \mathbf{dl} </math>
| mutual_inductance.DAT
|-
! scope="row"| Resistance
| <math> R = V/I_{cond} = - \int_C \mathbf{E(r)} . \mathbf{dl} / \int\int_S \sigma \mathbf{E(r)} . \mathbf{ds} </math>
| resistance.DAT
|}