Changes

EM.Libera

0 bytes added, 13:49, 13 August 2015
/* Excitation Sources */
{{Note|If you want to excite a curved wire antenna such as a circular loop or helix with a wire gap source, first you have to convert the curve object into a polyline using [[CubeCAD]]'s Polygonize Tool.}}
 
A short dipole provides another simple way of exciting a 3D structure in EM.Libera. A short dipole source acts like an infinitesimally small ideal current source. You can also use an incident plane wave to excite your physical structure in EM.Libera. In particular, you need a plane wave source to compute the radar cross section of a target. The direction of incidence is defined by the θ and φ angles of the unit propagation vector in the spherical coordinate system. The default values of the incidence angles are θ = 180° and φ = 0° corresponding to a normally incident plane wave propagating along the -Z direction with a +X-polarized E-vector. Huygens sources are virtual equivalent sources that capture the radiated electric and magnetic fields from another structure that was previously analyzed in another [[EM.Cube]] computational module.
[[Image:Info_icon.png|40px]] Click here to learn more about '''[[Common_Excitation_Source_Types_in_EM.Cube#Defining_Finite-Sized_Source_Arrays | Using Source Arrays in Antenna Arrays]]'''.
<tr>
</table>
 
A short dipole provides another simple way of exciting a 3D structure in EM.Libera. A short dipole source acts like an infinitesimally small ideal current source. You can also use an incident plane wave to excite your physical structure in EM.Libera. In particular, you need a plane wave source to compute the radar cross section of a target. The direction of incidence is defined by the &theta; and &phi; angles of the unit propagation vector in the spherical coordinate system. The default values of the incidence angles are &theta; = 180° and &phi; = 0° corresponding to a normally incident plane wave propagating along the -Z direction with a +X-polarized E-vector. Huygens sources are virtual equivalent sources that capture the radiated electric and magnetic fields from another structure that was previously analyzed in another [[EM.Cube]] computational module.
<table>
28,333
edits