* Click the '''OK''' button of the dielectric material dialog to accept the changes and close it.
{{Note|Under dielectric material groups, you cannot draw [[Surface Objects|surface objects]] or [[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|curve objects]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]].}}
<table>
"Show Mesh" generates a new mesh and displays it if there is none in the memory, or it simply displays an existing mesh in the memory. This is a useful feature because generating a PO mesh may take a long time depending on the complexity and size of objects. If you change the structure or alter the mesh settings, a new mesh is always generated. You can ignore the mesh in the memory and force [[EM.Cube]] to generate a mesh from the ground up by selecting '''Menu > Simulate > Discretization > Regenerate Mesh''' or by right clicking on the '''3-D Mesh''' item of the Navigation Tree and selecting '''Regenerate''' from the contextual menu.
To set the PO mesh properties, click on the [[File:mesh_settings.png]] button of the '''Simulate Toolbar''' or select '''Menu > Simulate > Discretization > Mesh Settings... '''or right click on the '''3-D Mesh''' item in the '''Discretization''' section of the Navigation Tree and select '''Mesh Settings...''' from the contextual menu, or use the keyboard shortcut '''Ctrl+G'''. You can change the value of '''Mesh Density''' to generate a triangular mesh with a higher or lower resolutions. Some additional mesh [[parameters]] can be access by clicking the {{key|Tessellation Options}} button of the dialog. In the Tessellation Options dialog, you can change '''Curvature Angle Tolerance''' expressed in degrees, which as a default value of 15°. This parameter can affect the shape of the mesh especially in the case of [[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|solid objects]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]. It determines the apex angle of the triangular cells of the primary tessellation mesh which is generated initially before cell regularization. Lower values of the angle tolerance result in a less smooth and more pointed mesh of curved surface like a sphere.
<table>
[[Image:MORE.png|40px]] Click here to learn more about '''[[Data_Visualization_and_Processing#Graphing_Port_Characteristics | Graphing Port Characteristics]]'''.
=== Visualizing Wire Current Distributions ===
[[Image:MOM10.png|thumb|350px|EM.Libera's Current Distribution dialog.]]
At the end of a MoM3D simulation, [[EM.Cube|EM.CUBE]]'s Wire MoM engine generates a number of output data files that contain all the computed simulation data. The main output data are the current distributions and far fields. You can easily examine the 3-D color-coded intensity plots of current distributions in the Project Workspace. Current distributions are visualized on all the wires and the magnitude and phase of the electric currents are plotted for all the PEC objects. In order to view these currents, you must first define current sensors before running the Wire MoM simulation. To do this, right click on the '''Current Distributions''' item in the '''Observables''' section of the Navigation Tree and select '''Insert New Observable...'''. The Current Distribution Dialog opens up. Accept the default settings and close the dialog. A new current distribution node is added to the Navigation Tree. Unlike the [[Planar Module]], in the [[MoM3D Module]] you can define only one current distribution node in the Navigation Tree, which covers all the PEC object in the Project Workspace. After a Wire MoM simulation is completed, new plots are added under the current distribution node of the Navigation Tree. Separate plots are produced for the magnitude and phase of the linear wire currents. The magnitude maps are plotted on a normalized scale with the minimum and maximum values displayed in the legend box. The phase maps are plotted in radians between -π and π.
Â
Current distribution maps are displayed with some default settings and options. You can customize the individual maps (total, magnitude, phase, etc.). To do so, open the '''Output Plot Settings Dialog''' by right clicking on the specific plot entry in the Navigation Tree and selecting '''Properties...''' or by double clicking on the surface of the plot's legend box. Two '''scale''' options are available: '''Linear''' and '''dB'''. With the '''Linear''' (default) option selected, the current value is always normalized to the maximum total current in that plane, and the normalized scale is mapped between the minimum and maximum values. If the '''dB''' option is selected, the normalized current is converted to dB scale. The plot limits (bounds) can be set individually for every current distribution plot. In the '''Limits''' section of the plot's property dialog, you see four options: '''Default''', '''User Defined''', '''95% Conf.''' and '''95% Conf.'''. Select the user defined option and enter new values for the '''Lower''' and '''Upper''' limits. The last two options are used to remove the outlier data within the 95% and 99% confidence intervals, respectively. In other words, the lower and upper limits are set to ? ± 1.96? and ? ± 2.79? , respectively, assuming a normal distribution of the data. Three color maps are offered: '''Default''', '''Rainbow''' and '''Grayscale'''. You can hide the legend box by deselecting the box labeled '''Show Legend Box'''. You can also change the foreground and background colors of the legend box.
[[Image:MORE.png|40px]] Click here to learn more about '''[[Data_Visualization_and_Processing#Visualizing_3D_Current_Distribution_Maps | Visualizing 3D Current Distribution Maps]]'''.