Changes
| <math> P_{ohmic} = \int\int\int_V \mathbf{J(r)} . \mathbf{E(r)} dv = \int\int\int_V \sigma \vert \mathbf{E(r)} \vert ^2 dv </math>
| ohmic.DAT
|-
! scope="row"| Resistance
| <math> R = V/I_{cond} = \int_C \mathbf{E(r)} . \mathbf{dl} / \int\int_S \mathbf{J(r)} . \mathbf{ds} = \int_C \mathbf{E(r)} . \mathbf{dl} / \int\int_S \sigma \mathbf{E(r)} . \mathbf{ds} </math>
| resistance.DAT
|-
! scope="row"| Capacitance
| <math> C = Q/V = \Phi_E/V = \int\int_{S_o} \epsilon \mathbf{E(r)} . \mathbf{ds} / \int_C \mathbf{E(r)} . \mathbf{dl} </math>
| capacitance.DAT
|-
! scope="row"| Self-Inductance
| <math> L = \Phi_H/I = \int\int_S \mu \mathbf{H(r)} . \mathbf{ds} / \oint_{C_o} \mathbf{H(r)} . \mathbf{dl} </math>
| inductance.DAT
|-
! scope="row"| ResistanceSelf-Inductance| <math> R L = V\Phi_H/I_{cond} I = \int_C int\mathbfint_S^{E(r)} . \mathbf{dlprime} / \int\int_S mu \mathbf{JH(r)} . \mathbf{ds} = / \int_C \mathbfoint_{E(r)C_o} . \mathbf{dl} / \int\int_S \sigma \mathbf{EH(r)} . \mathbf{dsdl} </math>| resistanceinductance.DAT
|}
In the above table, C represents an open curve (path), C<sub>o</sub> represents a closed curve (loop), S represents an open surface like a plane, S<sub>o</sub> represents a closed surface like a box, and V represents a volume. In the case of mutual inductance, S' represents an open surface or plane passing through the second (coupled) inductor. The domain of the field integral is set using the "Integration Box Coordinates" section of the Field Integral dialog. Box domains are specified by the coordinates of two opposite corners. Voltage Path requires a line; therefore, two of the coordinates of the two corners must be identical. Otherwise, an error message will pop up. For example, (0, 0, 0) for Corner 1 and (10, 0, 0) for Corner 2 define a Z-directed line segment. Current Loop requires a rectangle; therefore, one of the coordinates of the two corners must be identical. For example, (0, 0, 0) for Corner 1 and (10, 10, 0) for Corner 2 define a rectangle in the XY plane.
After the completion of a static simulation, the result of the field integrals are written into ".DAT" data files. These files can be accessed using [[EM.Cube]]'s Data Manager.