:<math> R_{\perp} = \frac { \eta_2(\mathbf{ \hat{k} \cdot \hat{n} }) - \eta_1(\mathbf{ \hat{k}^{\prime\prime} \cdot \hat{n} }) } { \eta_2(\mathbf{ \hat{k} \cdot \hat{n} }) + \eta_1(\mathbf{ \hat{k}^{\prime\prime} \cdot \hat{n} }) } = \frac{\eta_2 / \cos\theta^{\prime\prime} - \eta_1 / \cos\theta} {\eta_2 / \cos\theta^{\prime\prime} + \eta_1 / \cos\theta} = \frac{Z_{2\perp} - Z_{1\perp}} {Z_{2\perp} + Z_{1\perp}} </math>
<!--[[File:frml6.png]]-->
Â
== Penetration Through Thin Walls Or Surfaces ==
:<math> \Gamma_{\perp} = \frac{ \eta_2(\mathbf{ \hat{k} \cdot \hat{n} }) - \eta_1(\mathbf{ \hat{k}^{\prime\prime} \cdot \hat{n} }) } { \eta_2(\mathbf{ \hat{k} \cdot \hat{n} }) + \eta_1(\mathbf{ \hat{k}^{\prime\prime} \cdot \hat{n} }) } = \frac{\eta_2 / \cos\theta^{\prime\prime} - \eta_1 / \cos\theta} {\eta_2 / \cos\theta^{\prime\prime} + \eta_1 / \cos\theta} = \frac{Z_{2\perp} - Z_{1\perp}} {Z_{2\perp} + Z_{1\perp}} </math>
<!--[[File:frml21.png]]-->
Â
== Wedge Diffraction From Edges ==