Changes

EM.Libera

22 bytes added, 13:14, 15 May 2017
/* 3D Mesh Generation in EM.Libera */
[[EM.Libera]] features two simulation engines, Wire MoM and Surface MoM, which require different mesh types. The Wire MoM simulator handles only wire objects and wireframe structures. These objects are discretized as elementary linear elements (filaments). A wire is simply subdivided into smaller segments according to a mesh density criterion. Curved wires are first converted to multi-segment polylines and then subdivided further if necessary. At the connection points between two or more wires, junction basis functions are generated to ensure current continuity.
On the other hands, [[EM.Libera]]'s Surface MoM solver requires a triangular surface mesh of surface and [[Solid Objects|solid objects]].The mesh generating algorithm tries to generate regularized triangular cells with almost equal surface areas across the entire structure. You can control the cell size using the "Mesh Density" parameter. By default, the mesh density is expressed in terms of the free-space wavelength. The default mesh density is 10 cells per wavelength. For meshing surfaces, a mesh density of 7 cells per wavelength roughly translates to 100 triangular cells per squared wavelength. Alternatively, you can base the definition of the mesh density on "Cell Edge Length" expressed in project units.
[[Image:Info_icon.png|40px]] Click here to learn more about [[EM.Libera]]'s '''[[Mesh_Generation_Schemes_in_EM.Cube#The_Triangular_Surface_Mesh_Generator | Triangular Surface Mesh Generator ]]'''.
=== Mesh of Connected Objects ===
[[Image:MOM3.png|thumb|300px|EM.Libera's Mesh Hierarchy dialog.]]
All the objects belonging to the same PEC or dielectric group are merged together using the Boolean union operation before meshing. If your structure contains attached, interconnected or overlapping solid objects, their internal common faces are removed and only the surface of the external faces is meshed. Similarly, all the surface objects belonging to the same PEC group are merged together and their internal edges are removed before meshing. Note that a solid and a surface object belonging to the same PEC group might not always be merged properly.
When two objects belonging to two different material groups overlap or intersect each other, [[EM.Libera]] has to determine how to designate the overlap or common volume or surface. As an example, the figure below shows a dielectric cylinder sitting on top of a PEC plate. The two object share a circular area at the base of the cylinder. Are the cells on this circle metallic or do they belong to the dielectric material group? Note that the cells of the junction are displayed in a different color then those of either groups. To address problems of this kind, [[EM.Libera]] does provide a "Material Hierarchy" table, which you can modify. To access this table, select '''Menu > Simulate < discretization < Mesh Hierarchy...'''. The PEC groups by default have the highest priority and reside at the top of the table. You can select an group from the table and change its hierarch using the {{key|Move Up}} or {{key|Move Down}} buttons of the dialog. You can also change the color of junction cells that belong to each group.
 
<table>
<tr>
<td> [[Image:MOM3.png|thumb|300px|EM.Libera's Mesh Hierarchy dialog.]] </td>
</tr>
</table>
<table>
28,333
edits