Changes

Glossary of Black-Box Virtual Blocks

28,740 bytes added, 17:10, 8 November 2016
== 4-Bit A/D Converter Block ==
 
[[File:GK21.png]]
 
This is a 5-pin mixed-signal device with an analog input and 4 digital outputs. Based on the specified maximum input voltage level, a total of 16 discrete voltage levels are established. The block fits the input analog voltage between two of these 16 discrete levels and outputs the 4-bit binary equivalent to 4 digital pins B0-B3 representing the LSB and MSB, respectively.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|max_val||maximum input voltage||V||5||
|-
|}
 
== 4-Bit D/A Converter Block ==
 
[[File:GK22.png]]
 
This is a 5-pin mixed-signal device with 4 digital inputs and an analog output. Based on the specified low and high output voltage levels, a total of 16 discrete voltage levels are established. The block converts the input 4-bit word (B0-B3 representing the LSB and MSB, respectively) to the corresponding discrete voltage level and outputs it as an analog voltage signal.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|out_low||output low voltage level||V||0||
|-
|out_high||output high voltage level||V||5||
|-
|}
 
== 4-Bit Signal Digitizer Block ==
 
[[File:GK15.png]]
 
This is a 6-pin mixed-signal device with an analog input, a digital clock and 4 digital outputs. It samples its analog input signal at the period of the supplied digital clock. The digitized version of the input signal is sent out to 4 digital outputs B0-B3 representing the LSB and MSB, respectively.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||Ω||10G||
|-
|max_val||maximum input voltage||V||5||
|-
|}
 
== 8-Bit A/D Converter Block ==
 
[[File:GK23.png]]
 
This is a 9-pin mixed-signal device with an analog input and 8 digital outputs. Based on the specified maximum input voltage level, a total of 256 discrete voltage levels are established. The block fits the input analog voltage between two of these 256 discrete levels and outputs the 8-bit binary equivalent to 8 digital pins B0-B7 representing the LSB and MSB, respectively.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|max_val||maximum input voltage||V||5||
|-
|}
 
== 8-Bit D/A Converter Block ==
 
[[File:GK24.png]]
 
This is a 9-pin mixed-signal device with 8 digital inputs and an analog output. Based on the specified low and high output voltage levels, a total of 256 discrete voltage levels are established. The block converts the input 8-bit word (B0-B7 representing the LSB and MSB, respectively) to the corresponding discrete voltage level and outputs it as an analog voltage signal.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|out_low||output low voltage level||V||0||
|-
|out_high||output high voltage level||V||5||
|-
|}
 
== Amplitude Modulator Block==
 
[[File:GL87.png]]
 
This device takes an input signal and generates an AM modulated output signal of a specified carrier frequency with a specified modulation index.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||Ω||1G||
|-
|r_out||output resistance||Ω||1u||
|-
|m||modulation index||-||0.5||
|-
|fc||carrier frequency||Hz||1Meg||
|-
|ac||carrier peak amplitude||V||1||
|-
|}
 
== Amplitude Shift-Keying Modulator Block==
 
[[File:GL91.png]]
 
This device takes a digital input like a binary sequence and generates an ASK modulated output signal with two specified carrier amplitude levels.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_out||output resistance||Ω||1u||
|-
|fc||carrier frequency||Hz||1Meg||
|-
|ac_lo||low carrier peak amplitude||V||0.0||
|-
|ac_hi||high carrier peak amplitude||V||1.0||
|-
|}
 
== Analog Differentiator Block ==
|-
|fmax||maximum signal frequency||Hz||1Meg||
|-
|}
 
== Analog One-Half Frequency Divider Block==
 
[[File:GL78.png]]
 
This device takes a harmonic input signal and generates a harmonic output signal with a frequency one half lower and a user specified amplitude.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||Ω||1G||
|-
|r_out||output resistance||Ω||1u||
|-
|max_val||output amplitude||V||1.0||
|-
|}
 
== Analog Phase-Locked Loop Block==
 
[[File:GL86.png]]
 
This 5-pin device is a parameterized model of an analog phase-locked loop. It provides two phase-locked output signals with square wave and triangular wave waveforms. The outputs of the lowpass filter and phase detector are also accessible via the designated pins.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||Ω||1G||
|-
|r_out||output resistance||Ω||1u||
|-
|K_d||voltage conversion factor of phase detector||V/rad||1.0||
|-
|K_f||frequency conversion factor of VCO||Hz/V||1k||
|-
|V_sq||square wave output peak amplitude||V||1||
|-
|V_tri||triangular wave output peak amplitude||V||1||
|-
|VT||VCO input dynamic range||V||1||
|-
|r_time||VCO timing resistor||Ω||12k||
|-
|c_time||VCO timing capacitor||F||10n||
|-
|fo||VCO free-running frequency||Hz||1k||
|-
|r_lpf||lowpass filter resistor||Ω||10k||
|-
|c_lpf||lowpass filter capacitor||F||100n||
|-
|}
|-
|gain||gain||-||1.0||
|-
|}
 
== Clocked Sample-and-Hold Block ==
 
[[File:GK12.png]]
 
This device samples its input signal at a specified sampling period and holds the values of each sample during each clock cycle. The output signal is a quantized version of the input signal.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|duty_cycle||sampling pulse duty cycle||-||0.1||
|-
|Tmax||signal period or maximum duration||sec||10||
|-
|}
|-
|r_out_domain||output resistance smoothing domain||Ω||1n||
|-
|}
 
== Delta Modulator Block==
 
[[File:GL95.png]]
 
This device samples an input signal at the specified sampling period and generates a Delta modulated output signal from it.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||Ω||1G||
|-
|r_out||output resistance||Ω||1u||
|-
|T||sampling period||sec||1||
|-
|duty_cycle||sampling pulse duty cycle||-||0.01||
|-
|}
 
== Delta-Sigma Modulator Block==
 
[[File:GL96.png]]
 
This device samples an input signal at the specified sampling period and generates a Delta-Sigma modulated output signal from it.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||Ω||1G||
|-
|r_out||output resistance||Ω||1u||
|-
|T||sampling period||sec||1||
|-
|duty_cycle||sampling pulse duty cycle||-||0.01||
|-
|}
 
== Differential Phase Shift-Keying Modulator Block==
 
[[File:GL94.png]]
 
This device takes a digital input like a binary sequence and generates a DPSK modulated output signal with two specified carrier phase values. It also requires a digital clock input for synchronization.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_out||output resistance||Ω||1u||
|-
|phi_lo||low carrier phase value||rad||0||
|-
|phi_hi||high carrier phase value||rad||π||
|-
|fc||carrier frequency||Hz||1Meg||
|-
|ac||carrier peak amplitude||V||1.0||
|-
|}
|-
|limit_range||upper and lower limit smoothing range||-||1.0e-6||
|-
|}
 
== Digital Integrator Block ==
 
[[File:GK16.png]]
 
This device models a digital integrator with a Z-transform of -z<sup>-1/2</sup>, which is equivalent to a delay line with a delay of half the sampling period
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|}
 
== Discrete Convolution Block ==
 
[[File:GK20.png]]
 
These blocks perform an N-point discrete convolution of their input signals. Both of the input signals x(t) and h(t) are sampled at the specified sampling period. The samples of x(t) are then shifted in time for the convolution. The output signal is a pulse train of the same period with the specified duty cycle. The input signal of these block can be either continuous-time signals or pulse trains of the specified period.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|rise_time||window rise time ||sec||0||
|-
|fall_time||window fall time ||sec||0||
|-
|duty_cycle||output pulse duty cycle||-||0.1||
|-
|gain||output gain||-||1||
|-
|}
 
== Discrete Fourier Transform (DFT) Block ==
 
[[File:GK19.png]]
 
These blocks perform an M-point discrete Fourier transform (DFT) of their input signal and then sample each period of the Fourier transform N times in the frequency domain. The output signals are two finite sequence pulse trains representing the cosine and sine DFT transforms. The input signal of these block can be either a continuous-time signal or a pulse train of the specified period.
 
There are ten DFT blocks for M = 5, 6, 7, 8, 9, 10, 12, 16, 32, 64. In each case, the total duration of the transform window is MT, where T is the sampling period. By default, the frequency domain sampling starts at t = MT and takes place over one spectral period equal to f<sub>s</sub> = 1/T. You can change the sampling start time by "n_delay" temporal periods. n_delay = 0 by default, but it can be either positive or negative. You can also extend spectral sampling to more than one spectral period by increasing the value of the parameter "n_dur", which has a default value of 1.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|N||sequence length||-||5||required
|-
|rise_time||window rise time ||sec||0||
|-
|fall_time||window fall time ||sec||0||
|-
|duty_cycle||output pulse duty cycle||-||0.1||
|-
|n_delay||number of delayed period before sampling||-||0||
|-
|n_dur||number of frequency-sampled periods||-||1||
|-
|}
 
== Discrete-Time Fourier Transform (DTFT) Block ==
 
[[File:GK18.png]]
 
These blocks perform an N-point discrete-time Fourier transform (DTFT) of their input signal and output the transform as two temporal voltage signals representing the cosine and sine DTFT transforms. The
The input signal of these block can be either a continuous-time signal or a pulse train of the specified period.
 
There are ten DTFT blocks for N = 5, 6, 7, 8, 9, 10, 12, 16, 32, 64. In each case, the total duration of the transform window is NT, where T is the sampling period.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|rise_time||window rise time ||sec||0||
|-
|fall_time||window fall time ||sec||0||
|-
|}
 
== Discrete-Time Signal Hold Block ==
 
[[File:GK14.png]]
 
This device takes a pulse train of a specified period as its input and holds the value of each pulse's amplitude during each clock cycle at the output.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|duty_cycle||sampling pulse duty cycle||-||0.1||
|-
|rise_time||window rise time ||sec||0||
|-
|fall_time||window fall time ||sec||0||
|-
|Tmax||signal period or maximum duration||sec||10||
|-
|}
|-
|start||start time||sec||0||
|-
|}
 
== Finite Sequence Signal Sampler Block ==
 
[[File:GK11.png]]
 
This device samples its input signal during a finite time window at a specified sampling period and outputs a pulse train of finite duration with a specified duty cycle.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|duty_cycle||sampling pulse duty cycle||-||0.01||
|-
|rise_time||window rise time ||sec||0||
|-
|fall_time||window fall time ||sec||0||
|-
|n||number of samples||-||5||
|-
|start||start time ||sec||0||
|-
|}
|-
|max_in||input amplitude||V||1||
|-
|}
 
==Frequency Doubler Block==
 
[[File:GL76.png]]
 
This device takes a harmonic input signal and generates a harmonic output signal with twice the frequency and a user specified amplitude.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||&Omega;||1G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|max_val||output amplitude||V||1.0||
|-
|}
 
== Frequency Down-Converter Block==
 
[[File:GL80.png]]
 
This 3-pin device takes two harmonic input signals with different frequencies f<sub>LO</sub> and f<sub>IF</sub> and generates a harmonic output signal with a frequency equal to f<sub>RF</sub> = f<sub>LO</sub> - f<sub>IF</sub> and a user specified amplitude.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||&Omega;||1G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|max_in||peak amplitude of both inputs||V||1.0||Both inputs must have equal amplitudes.
|-
|max_out||output amplitude||V||1.0||
|-
|}
 
== Frequency Modulator Block==
 
[[File:GL88.png]]
 
This device takes an input signal and generates an FM modulated output signal of a specified carrier frequency with a specified maximum frequency deviation.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||&Omega;||1G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|f_del||maximum frequency deviation||Hz||500k||
|-
|fc||carrier frequency||Hz||1Meg||
|-
|ac||carrier peak amplitude||V||1||
|-
|}
 
== Frequency Shift-Keying Modulator Block==
 
[[File:GL92.png]]
 
This device takes a digital input like a binary sequence and generates an FSK modulated output signal with two specified carrier frequencies.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_out||output resistance||&Omega;||1u||
|-
|fc_lo||low carrier frequency||Hz||1Meg||
|-
|fc_hi||high carrier frequency||Hz||2Meg||
|-
|ac||carrier peak amplitude||V||1.0||
|-
|}
 
== Frequency Up-Converter Block==
 
[[File:GL79.png]]
 
This 3-pin device takes two harmonic input signals with different frequencies f<sub>LO</sub> and f<sub>IF</sub> and generates a harmonic output signal with a frequency equal to f<sub>RF</sub> = f<sub>LO</sub> + f<sub>IF</sub> and a user specified amplitude.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||&Omega;||1G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|max_in||peak amplitude of both inputs||V||1.0||both inputs must have equal amplitudes.
|-
|max_out||output amplitude||V||1.0||
|-
|}
|-
|out_offset||out_offset||V||0.0||
|-
|}
 
==Generalized Analog Filter Block==
 
[[File:GL85.png]]
 
This block models a generalize analog filter characterized by a rational transfer functions in the spectral domain Laplace variable s:
 
<math> H(s) = \frac{N(s)}{D(s)} = \frac{ \sum_{m=0}^{M} b_m s^m }{ \sum_{n=0}^{N} a_n s^n } </math>
 
subject to the requirement N &ge; M and a<sub>N</sub> = 1. To access the parameters of this block, you have to click the {{key|Edit Model...}} button of its property dialog.
 
The functionality of this block, which is native to [[RF.Spice A/D]], is very similar to the s-domain transfer function block, which is an XPSICE process model. This block does not have a denormalization frequency parameter. Therefore, at frequencies other than the unit frequency, the transfer function must be explicitly scaled. This block can be used in conjunction with both transient and AC frequency sweep tests.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|deg||highest degree of s in transfer function||-||2||required
|-
|coeff_den||denominator coefficients array: coefficients of powers of s, highest power first||-||1 0 1||required
|-
|coeff_num||numerator coefficients array: coefficients of powers of s, highest power first||-||0 0 1||required
|-
|r_in||input resistance||&Omega;||10G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|}
 
==Generalized Digital Filter Block==
 
[[File:GK17.png]]
 
This block models a generalized digital filter characterized by a rational transfer functions in the Z-transform domain variable z:
 
<math> H(z) = \frac{N(z)}{D(z)} = \frac{ \sum_{m=0}^{M} b_m z^m }{ \sum_{n=0}^{N} a_n z^n } </math>
 
subject to the requirement N &ge; M. To access the parameters of this block, you have to click the {{key|Edit Model...}} button of its property dialog.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|deg||highest degree of z in transfer function||-||2||required
|-
|coeff_den||denominator coefficients array: coefficients of powers of (-z<sup>1/2</sup>), highest power first||-||1 0 1 0 1||required
|-
|coeff_num||numerator coefficients array: coefficients of powers of (-z<sup>1/2</sup>), highest power first||-||1 0 0 0 0||required
|-
|freq||sampling frequency||Hz||1||required
|-
|}
 
== Generic Bandpass Filter Block==
 
[[File:GL83.png]]
 
This device is a generic bandpass filter with user specified center frequency and bandwidth. It is based on a fifth-order Butterworth LC ladder topology.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|f0||center frequency||Hz||1Meg||
|-
|bw||bandwidth||Hz||200k||
|-
|r0||source/load resistance||&Omega;||50||
|-
|}
 
== Generic Bandstop Filter Block==
 
[[File:GL84.png]]
 
This device is a generic bandstop filter with user specified center frequency and bandwidth. It is based on a fifth-order Butterworth LC ladder topology.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|f0||center frequency||Hz||1Meg||
|-
|bw||bandwidth||Hz||200k||
|-
|r0||source/load resistance||&Omega;||50||
|-
|}
 
== Generic Highpass Filter Block==
 
[[File:GL82.png]]
 
This device is a generic highpass filter with a user specified cutoff frequency. It is based on a fifth-order Butterworth LC ladder topology.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|cutoff||cutoff frequency||Hz||1Meg||
|-
|r0||source/load resistance||&Omega;||50||
|-
|}
 
== Generic Lowpass Filter Block==
[[File:GL81.png]]
 
This device is a generic lowpass filter with a user specified cutoff frequency. It is based on a fifth-order Butterworth LC ladder topology.
 
[[Parameters]]:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|cutoff||cutoff frequency||Hz||1Meg||
|-
|r0||source/load resistance||&Omega;||50||
|-
|}
|-
|out_offset||output offset||V||0.0||
|-
|}
 
== One-Shot Sample-and-Hold Block ==
 
[[File:GK13.png]]
 
This device follows its input signal and samples it at a specified instant of time. It holds the value of that sample at its output indefinitely.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|Tmax||signal period or maximum duration||sec||10||
|-
|}
|-
|K_v||voltage conversion factor||V/rad||1||
|-
|}
 
== Phase Modulator Block==
 
[[File:GL89.png]]
 
This device takes an input signal and generates an PM modulated output signal of a specified carrier frequency with a specified maximum phase deviation.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||&Omega;||1G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|phi_del||maximum phase deviation||rad||&pi;||
|-
|fc||carrier frequency||Hz||1Meg||
|-
|ac||carrier peak amplitude||V||1||
|-
|phi0||carrier phase||rad||0||
|-
|}
 
== Phase Shift-Keying Modulator Block==
 
[[File:GL93.png]]
 
This device takes a digital input like a binary sequence and generates a PSK modulated output signal with two specified carrier phase values.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_out||output resistance||&Omega;||1u||
|-
|phi_lo||low carrier phase value||rad||0||
|-
|phi_hi||high carrier phase value||rad||&pi;||
|-
|fc||carrier frequency||Hz||1Meg||
|-
|ac||carrier peak amplitude||V||1.0||
|-
|}
|-
|out_gain1||output gain||-||1.0||
|-
|}
 
== Pulse Generator ==
 
[[File:GL18.png]]
 
This is a voltage source that generates a periodic pulse train with user defined low and high voltage levels.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|fo||frequency||Hz||1Meg||required
|-
|duty_cycle||pulse duty cycle||-||0.5||required
|-
|delay||delay time||sec||0||
|-
|rise_time||pulse rise time||sec||0||
|-
|fall_time||pulse fall time||sec||0||
|-
|out_low||low output voltage level||V||-1||
|-|-
|out_high||high output voltage level||V||+1||
|-
|}
 
== Pulse Width Modulator Block==
 
[[File:GL97.png]]
 
This device takes an input signal and compares it to an internally generated ramp signal with a specified period and generates a binary PWM modulated output signal. A designated pin provides the ramp signal output.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||&Omega;||1G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|V_lo||low output voltage level||V||0||
|-
|V_hi||high output voltage level||V||1||
|-
|V_lo||hysteresis voltage tolerance||V||100m||
|-
|T_rmp||sampling period||sec||1m||
|-
|rmp_lo||ramp minimum voltage level||V||0||
|-
|rmp_hi||ramp maximum voltage level||V||1||
|-
|duty_cycle||ramp duty cycle||-||0.01||Must be between 0.01 and 0.99
|-
|}
 
== Quadrature Amplitude Modulator Block==
 
[[File:GL90.png]]
 
This 3-pin device takes two input signals and generates a QAM modulated output signal of a specified carrier frequency:
 
<math> v_{out}(t) = A_c \left( v_{in_I}(t) \cdot \cos(2\pi f_c t) + v_{in_Q}(t) \cdot \sin(2\pi f_c t) \right) </math>
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||&Omega;||1G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|fc||carrier frequency||Hz||1Meg||
|-
|ac||carrier peak amplitude||V||1||
|-
|}
 
== Quadrature Harmonic Wave Generator ==
 
[[File:GL22.png]]
 
This is a 3-pin voltage source that generates two sinusoidal wave outputs with a 90&deg; phase difference.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|fo||frequency||Hz||1Meg||required
|-
|max_val||maximum output voltage level||V||1||
|-
|Vo||offset DC voltage||V||0||
|-
|Td||delay time||sec||0||
|-
|}
|-
|G_Rx||receive antenna gain in dB||-||0||
|-
|}
 
== Ramp Generator ==
 
[[File:GL18.png]]
 
This is a voltage source that generates a periodic ramp also known as a sawtooth waveform with user defined low and high voltage levels. You can define either an up-ramp or a down-ramp.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|T||ramp period||sec||1m||required
|-
|out_low||low output voltage level||V||-1||
|-
|out_high||high output voltage level||V||+1||
|-
|ramp_type||0 for up-ramp, 1 for down-ramp||-||0||
|-
|}
 
== Random Digitized Signal Generator ==
 
[[File:GL32.png]]
 
This is a voltage source that generates a periodic random digitized signal with a user defined number of random levels.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|period||sampling period||sec||1||required
|-
|n_rand||number of random levels||-||10||
|-
|max_val||maximum output voltage level||V||1||
|-
|}
 
==Random Noise Generator==
 
[[File:GL29.png]]
 
This is a periodic noise generator with user defined peak-to-peak amplitude fluctuation.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|vpp||peak-to-peak amplitude||V||0.1||required
|-
|offset||offset voltage||V||0||
|-
|period||period||sec||1m||required
|-
|}
 
== Random Pulse Generator ==
 
[[File:GL31.png]]
 
This is a voltage source that generates a periodic random pulse train with a user defined number of random levels. By default, both the pulse amplitude and pulse width are randomized. You have the option to fix either of these [[parameters]].
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|period||period||sec||1||required
|-
|duty_cycle||pulse duty cycle||-||0.5||required
|-
|random_amp||1 for random amplitude, 0 otherwise||-||1||
|-
|random_wid||1 for random pulse width, 0 otherwise||-||1||
|-
|n_rand||number of random levels||-||10||
|-
|rise_time||pulse rise time||sec||0||
|-
|fall_time||pulse fall time||sec||0||
|-
|max_val||maximum output voltage level||V||1||
|-
|}
None
 
== Signal Sampler Block ==
 
[[File:GK11.png]]
 
This device samples its input signal at a specified sampling period and outputs a pulse train with a specified duty cycle.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T||sampling period||sec||1||required
|-
|duty_cycle||sampling pulse duty cycle||-||0.01||
|-
|rise_time||window rise time ||sec||0||
|-
|fall_time||window fall time ||sec||0||
|-
|}
==Sine-to-Square Wave Converter Block==
|-
|gain||converter gain||-||1||
|-
|}
 
== Sine Wave Chirp Generator ==
 
[[File:GL26.png]]
 
This is a voltage source that generates a sine wave output with sawtooth chirp modulation.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|period||chirp period||sec||1u||required
|-
|freq_low||lower frequency value||Hz||10Meg||required
|-
|freq_high||higher frequency value||Hz||20Meg||required
|-
|max_val||maximum output voltage level||V||1||
|-
|chirp_type||0 for up-chirp, 1 for down-chirp||-||0||
|-
|}
 
==Sine Wave VCO Block==
 
[[File:GL73.png]]
 
This device is a voltage-controlled oscillator block with a sinusoidal output signal.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|fo||free-running frequency||Hz||1Meg||
|-
|K_f||frequency conversion factor||Hz/V||500k||
|-
|max_val||output peak amplitude||V||1||
|-
|}
|-
|gain||gain||-||1.0||
|-
|}
 
== Square Wave Chirp Generator ==
 
[[File:GL27.png]]
 
This is a voltage source that generates a pulse train or square wave output with sawtooth chirp modulation.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|period||chirp period||sec||1u||required
|-
|freq_low||lower frequency value||Hz||10Meg||required
|-
|freq_high||higher frequency value||Hz||20Meg||required
|-
|out_low||output lower limit||V||-1||
|-
|out_high||output higher limit||V||+1||
|-
|chirp_type||0 for up-chirp, 1 for down-chirp||-||0||
|-
|}
 
==Square Wave VCO Block==
 
[[File:GL75.png]]
 
This device is a voltage-controlled oscillator block with a square wave output signal oscillating between two binary voltage levels.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|fo||free-running frequency||Hz||1Meg||
|-
|K_f||frequency conversion factor||Hz/V||500k||
|-
|duty_cycle||pulse duty cycle||-||0.5||
|-
|rise_time||pulse rise time||sec||1n||
|-
|fall_time||pulse fall time||sec||1n||
|-
|out_low||output lower limit||V||-1.0||
|-
|out_high||output higher limit||V||-1.0||
|-
|}
|-
|out_offset||output offset||V||0.0||
|-
|}
 
== Temporal Window Block ==
 
[[File:GK10.png]]
 
This device gates its input signals in time from instant t = T1 to instant t = T2.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|T1||start time ||sec||0||
|-
|T2||stop time ||sec||1m||
|-
|rise_time||window rise time ||sec||0||
|-
|fall_time||window fall time ||sec||0||
|-
|}
|-
|max_val||output peak amplitude||V||1||
|-
|}
 
== Triangular Wave Chirp Generator ==
 
[[File:GL27.png]]
 
This is a voltage source that generates a triangular wave output with sawtooth chirp modulation.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|period||chirp period||sec||1u||required
|-
|freq_low||lower frequency value||Hz||10Meg||required
|-
|freq_high||higher frequency value||Hz||20Meg||required
|-
|out_low||output lower limit||V||-1||
|-
|out_high||output higher limit||V||+1||
|-
|chirp_type||0 for up-chirp, 1 for down-chirp||-||0||
|-
|}
 
== Triangular Wave Generator ==
 
[[File:GL21.png]]
 
This is a voltage source that generates a triangular wave output oscillating between -A and A, where A is a user defined maximum voltage levels.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNIT!!DEFAULT!!NOTES
|-
|fo||frequency||Hz||1Meg||required
|-
|duty_cycle||pulse duty cycle||-||0.5||required
|-
|max_val||maximum output voltage level||V||1||
|-
|}
 
==Triangular Wave VCO Block==
 
[[File:GL74.png]]
 
This device is a voltage-controlled oscillator block with a triangular wave output signal oscillating between two binary voltage levels. The parameter "duty_cycle" has a default value of 0.5, generating a symmetric triangular output. In the limiting cases of duty_cycle = 0.99 and duty_cycle = 0.01, the output will have an up-ramp or a down-ramp sawtooth waveform, respectively.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|fo||free-running frequency||Hz||1Meg||
|-
|K_f||frequency conversion factor||Hz/V||500k||
|-
|duty_cycle||triangular waveform duty cycle||-||0.5||Must be between 0.01 and 0.99.
|-
|out_low||output lower limit||V||-1.0||
|-
|out_high||output higher limit||V||-1.0||
|-
|}
 
== xN Frequency Multiplier Block==
 
[[File:GL77.png]]
 
These devices take a harmonic input signal and generate a harmonic output signal with a frequency N times larger and a user specified amplitude: N = 3, 4, 5, 6, 7, 8, 9, 10.
 
Parameters:
 
{| class="wikitable"
|-
!NAME!!PARAMETER!!UNITS!!DEFAULT!!NOTES
|-
|r_in||input resistance||&Omega;||1G||
|-
|r_out||output resistance||&Omega;||1u||
|-
|max_val||output amplitude||V||1.0||
|-
|}
28,333
edits