:<math> \mathbf{ \hat{u}_b' = \hat{k}' \times \hat{u}_f' } </math>
<!--[[File:frml9.png]]-->
The diffraction coefficients are calculated in the following way:
:<math> D_h = \frac{-e^{-j\pi/4}}{2n \sqrt{2\pi k} \sin\beta_0'} \left\lbrace \begin{align} & \cot \left(\frac{\pi + (\phi-\phi')}{2n}\right) F[kLa^+(\phi-\phi')] + \cot \left(\frac{\pi - (\phi-\phi')}{2n}\right) F[kLa^-(\phi-\phi')] + \\ & R_{0 \|} \cot \left(\frac{\pi - (\phi+\phi')}{2n}\right) F[kLa^-(\phi+\phi')] + R_{n \|} \cot \left(\frac{\pi + (\phi+\phi')}{2n}\right) F[kLa^+(\phi+\phi')] \end{align} \right\rbrace </math>
<!--[[File:frml11.png]]-->
where ''F(x)'' is the Fresnel Transition function:
:<math> F(x) = 2j \sqrt{x} e^{jx} \int_{\sqrt{x}}^{\infty} e^{-j\tau^2} \, d\tau </math>
<!--[[File:frml12.png]]-->
In the above equations, we have
:<math>a^{\pm}(\nu) = 2\cos^2 \left( \frac{2n\pi N^{\pm} - \nu}{2} \right), \quad \nu = \phi \pm \phi' </math>
where <math>N^{\pm}</math> are the integers which most closely satisfy the equations <math> 2n\pi N^{\pm} - \nu = \pm \pi </math>.
[[File:frml10.png]]<br />
[[File:frml13.png]]<hr>
where <math>N^{\pm}</math> are [[Image:Top_icon.png|48px]] '''[[#Free-Space Wave Propagation | Back to the integers which most closely satisfy Top of the equations <math> 2n\pi N^{\pm} - \nu = \pm \pi </math>.Page]]'''
<p> </p>
[[Image:Back_icon.png|40px]] '''[[EM.Terrano | Back to EM.Terrano Main Page]]'''
Â
[[Image:Tutorial_icon.png|40px]] '''[[EM.Cube#EM.Terrano_Tutorial_Lessons | EM.Terrano Tutorial Gateway]]'''
Â
[[Image:Back_icon.png|40px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''