Changes

EM.Picasso

1,382 bytes added, 15:16, 11 June 2013
/* Periodic MoM Simulation */
In the case of an infinite periodic planar structure, the field equations can be written in the following form:
:<math>\mathbf{E(r) = E^{inc}(r)} + \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\bigg[\iiint_V \mathbf{ \overline{\overline{G}}_{EJ}(r|r') \cdot J_{mn}(r') } \, d\nu' + \iiint_V \mathbf{ \overline{\overline{G}}_{EM}(r|r') \cdot M_{mn}(r') } \, d\nu'\bigg]</math>  :<math>\mathbf{H(r) = H^{inc}(r)} + \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\bigg[\iiint_V \mathbf{ \overline{\overline{G}}_{HJ}(r|r') \cdot J_{mn}(r') } \, d\nu' + \iiint_V \mathbf{ \overline{\overline{G}}_{HM}(r|r') \cdot M_{mn}(r') } \, d\nu'\bigg]</math><!--[[File:PMOM94.png]]-->
where
[[File:PMOM95<math>\mathbf{J_{mn}(1r).png]]= J_{mn}}(x,y,z) = \mathbf{J_{00}}(x+m S_x, y+n S_y, z) e^{j(m k_{x00} S_x + n k_{y00} S_y)}</math>
In the above equations, '''J:<sub>00</submath>\mathbf{M_{mn}(r)''' and '''M<sub>= M_{mn}}(x,y,z) = \mathbf{M_{00</sub>}}(r)''' are the periodic unit cell's electric and magnetic currents that are repeated everywhere in space on a rectangular lattice with periods S<sub>x</sub> and S<sub>+m S_x, y</sub> along the X and Y directions+n S_y, respectively. k<sub>z) e^{j(m k_{x00</sub> and k<sub>} S_x + n k_{y00} S_y)}</submath> are the periodic propagation constants along the X and Y directions, respectively, and they are given by:
and :<math> -\infty < m, n < \infty </math><!--[[File:PMOM95(1).png]]--> In the above equations, <math>\mathbf{J_{00}(r)}</math> and <math>\mathbf{M_{00}(r)}</math> are the periodic unit cell's electric and magnetic currents that are repeated everywhere in space on a rectangular lattice with periods S<sub>x</sub> and S<sub>y</sub> along the X and Y directions, respectively. <math>k_{x00}</math> and <math>k_{y00}</math> are the periodic propagation constants along the X and Y directions, respectively, and they are given by: :<math> k_{x00} = k_0 \sin\theta \cos\phi </math> :<math> k_{y00} = k_0 \sin\theta \sin\phi </math><!--[[File:PMOM96(1).png]]-->
where &theta; and &phi; are the beam scan angles in the case of periodic excitation of lumped sources, or they are the spherical angles of incidence in the case of a plane wave source illuminating the periodic structure. Using the infinite summations, one can define periodic dyadic Green's functions in the spectral domain in the following manner:
:<math>\mathbf{ \overline{\overline{G}}_{\mu \nu}^{PER} (r|r') } =\frac{1}{S_x S_y} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\mathbf{ \tilde{\overline{\overline{G}}}_{\mu \nu} } (k_x, k_y, z|z')e^{-j[k_{xm}(x-x') + k_{yn}(y-y')]}</math> where:<math>k_{xm} = k_{x00} + \frac{2\pi m}{S_x} \quad \text{and} \quadk_{ym} = k_{y00} + \frac{2\pi m}{S_y}</math><!--[[File:PMOM97.png]]-->
The above doubly infinite periodic Green's functions are said to be expressed in terms of &quot;Floquet Modes&quot;. The exact formulation involves an infinite set of these periodic Floquet modes. During the MoM matrix fill process for a periodic structure, a finite number of Floquet modes are calculated. By default, EM.Cube's planar MoM engine considers M<sub>x</sub> = M<sub>y</sub> = 25. This implies a total of 51 modes along the X direction and a total of 51 modes along the Y direction, or a grand total of 51<sup>2</sup> = 2,601 Floquet modes. You can increase the number of Floquet modes for your project from the Planar MoM Engine Settings Dialog. In the section titled &quot;Periodic Simulation&quot;, you can change the values of '''Number of Floquet Modes''' in the two boxes designated X and Y.
Administrator
613
edits