* Click the '''OK''' button of the dielectric material dialog to accept the changes and close it.
{{Note|Under dielectric material groups, you cannot draw [[Surface Objects|surface objects]] or [[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|[[Curve Objects|curve objects]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]].}}
<table>
"Show Mesh" generates a new mesh and displays it if there is none in the memory, or it simply displays an existing mesh in the memory. This is a useful feature because generating a PO mesh may take a long time depending on the complexity and size of objects. If you change the structure or alter the mesh settings, a new mesh is always generated. You can ignore the mesh in the memory and force [[EM.Cube]] to generate a mesh from the ground up by selecting '''Menu > Simulate > Discretization > Regenerate Mesh''' or by right clicking on the '''3-D Mesh''' item of the Navigation Tree and selecting '''Regenerate''' from the contextual menu.
To set the PO mesh properties, click on the [[File:mesh_settings.png]] button of the '''Simulate Toolbar''' or select '''Menu > Simulate > Discretization > Mesh Settings... '''or right click on the '''3-D Mesh''' item in the '''Discretization''' section of the Navigation Tree and select '''Mesh Settings...''' from the contextual menu, or use the keyboard shortcut '''Ctrl+G'''. You can change the value of '''Mesh Density''' to generate a triangular mesh with a higher or lower resolutions. Some additional mesh [[parameters]] can be access by clicking the {{key|Tessellation Options}} button of the dialog. In the Tessellation Options dialog, you can change '''Curvature Angle Tolerance''' expressed in degrees, which as a default value of 15°. This parameter can affect the shape of the mesh especially in the case of [[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|solid objects]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]. It determines the apex angle of the triangular cells of the primary tessellation mesh which is generated initially before cell regularization. Lower values of the angle tolerance result in a less smooth and more pointed mesh of curved surface like a sphere.
<table>
</table>
[[Image:port-definition.png|thumb|450px|EM.Libera's Port Definition dialog.]]
=== Defining Ports ===
{{Note|In [[EM.Cube]] you cannot assign ports to an array object, even if it contains sources on its elements. To calculate the S [[parameters]] of an antenna array, you have to construct it using individual elements, not as an array object.}}
[[FileImage:port-definitionMOM7.png]]Â The [[MoM3D Module]]|thumb|360px|EM.Libera's port definition short dipole source dialog.]]
=== Hertzian Dipole Sources ===
Â
[[Image:MOM7.png|thumb|360px|EM.Libera's short dipole source dialog.]]
A short dipole provides a simple way of exciting a structure in EM.Libera. A short dipole source acts like an infinitesimally small ideal current source. To define a short dipole source, follow these steps:
* In the '''Direction Unit Vector''' section, you can specify the orientation of the short dipole by setting values for the components '''uX''', '''uY''', and '''uZ''' of the dipole's unit vector. The default values correspond to a vertical (Z-directed) short dipole. The dialog normalizes the vector components upon closure even if your component values do not satisfy a unit magnitude.
[[Image:MOM8.png|thumb|360px|EM.Libera's Plane Wave dialog.]]
=== Plane Wave Sources ===
Â
[[Image:MOM8.png|thumb|360px|EM.Libera's Plane Wave dialog.]]
The wire-frame structure in the [[MoM3D Module]] can be excited by an incident plane wave. In particular, a plane wave source can be used to compute the radar cross section of a metallic target. A plane wave is defined by its propagation vector indicating the direction of incidence and its polarization. [[EM.Cube|EM.CUBE]]'s [[MoM3D Module]] provides the following polarization options: