Digital Tutorial Lesson 6: Building a Ripple-Carry Adder Using Your Reusable Digital Parts

From Emagtech Wiki
Jump to: navigation, search
Tutorial Project: Building a Ripple-Carry Adder Using Your Reusable Digital Parts
TUT9-10.png

Objective: In this project, you will use your reusable half and full adder devices to build and test a two-input 4-bit ripple-carry adder circuit.

Concepts/Features:

  • Reusable Device
  • Parts Database
  • Binary Counter
  • Least Significant Bit
  • Most Significant Bit

Minimum Version Required: All versions

'Download2x.png Download Link: Digital Lesson 6

What You Will Learn

In this tutorial you will use the reusable digital half adder and full adder devices, which you created in the previous tutorial lesson, to build a four-bit ripple-carry adder circuit.

You can use multiple full adders to build an N-bit adder circuit. Each full adder inputs a Cin, which is the Cout of the previous adder. This kind of adder is called a ripple-carry adder, since each carry bit "ripples" to the next full adder. Note that the first (and only the first) full adder may be replaced by a half adder (under the assumption that Cin = 0).

Building a Ripple-Carry Adder

The following is a list of parts needed for this part of the tutorial lesson:

Part Name Part Type Part Value
A0 - A3 Digital Input 1-bit
B0 - B3 Digital Input 1-bit
S0 - S3 Digital Output N/A
Cout Digital Output N/A
U1 Reusable Digital Device MyHA Defaults
u2 - U4 Reusable Digital Device MyFA Defaults

In this tutorial lesson, you will build a 4-bit ripple-carry binary adder using the half adder and full adder devices you created in the previous tutorial lesson. To find and place your new adder parts, you can go to the Parts Bin of the Toolbox and search for "MyHA" and "MyFA" alphabetically under the letter "M".

Finding a device in the Parts Bin of the Toolbox.

Alternatively, you can open the "Select Device Dialog" by choosing Menu > Parts > Select Part.... If you know the device's name, you can type it in the box labeled Name and click the Find button. Or you can use the device database filter and type in a few letters, e.g. "My" to find both of your devices.

Finding a device using the "Select Device" dialog.

Place all the parts listed above in the schematic editor and connect them as shown in the figure below. Note that the half adder block U1 is used for the least significant bits A0 and B0, and the full adder block U2, U3 and U4 are used for the more significant bits. The "Cout" output of the last full adder block U4 summing the most significant bits A4 and B4 is taken out as the "Carry" output of the whole circuit.

The 4-bit Ripple-Carry Binary Adder Circuit.

Testing Your Ripple-Carry Adder Circuit

You can run different simulation scenarios by inputting 4-bit binary numbers to A's and B's. The figures below show two of such scenarios. In the first figure, A = 1001 (9) and B = 0011 (3). The sum is 1100 representing the decimal number 12. In the second figure, A = 1011 (11) and B = 0111 (7). The sum of these inputs must be the decimal number 18, which is equivalent to 0010 with a carry of 1 in a 4-bit system (i.e. 2 + 16), which can be seen in the figure.

The outputs of the 4-bit Ripple-Carry Binary Adder when A = 1001 and B = 0011 (adding 9 + 3).
The outputs of the 4-bit Ripple-Carry Binary Adder when A = 1011 and B = 0111 (adding 11 + 7).

 

Back icon.png Back to RF.Spice A/D Tutorial Gateway